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Leaked Password Checking
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User Passwords

Browser

Database of 
Leaked Passwords

Service

Service has a database of leaked passwords. 

Browser wants to know if passwords are compromised.
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Sending database to Browser is not secure either.
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Need Cryptography for Security

6

User Passwords

Browser

Database of 
Leaked Passwords

Service

Compare

MPC(Browser, Service)

Leaked PasswordsUser Passwords
Y/N

Difficult to build! Rolling your own crypto!



The Viaduct Approach

host Browser 
host Service 

fun check_passwords() { 
  val b = Browser.input<int>() 
  val s = Service.input<Array<int>>() 
  val leaked = b ∊ s 
  Browser.output(leaked) 
}
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Single program

Sequential

Doesn’t mention crypto
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Viaduct Synthesizes Secure Protocols

host Browser 
host Service 

fun check_passwords() { 
  val b@Browser = Browser.input<int>() 
  val s@Service = Service.input<Array<int>>() 
  val leaked@MPC(Browser, Service) = b ∊ s 
  Browser.output(leaked) 
}
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How does Viaduct 
decide this needs 

cryptography?

Intutively, involves 
data from both hosts.

We need a way to formally specify security policies.



Information Flow Labels

Pair of confidentiality and integrity:


 =〈confidentiality, integrity〉


Each component a boolean formula over hosts


Ordered by implication: A ∧ B ⇒ A ⇒ A ∨ B 

ℓ
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A ∧ B 

A B

A ∨ B 

more secret,

more trusted

less secret,

less trusted



Data Labels (Standard Information Flow Typing)

fun check_passwords() {

  val b :〈Browser, Browser〉= Browser.input<int>()
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Data Labels (Standard Information Flow Typing)

fun check_passwords() {

  val b :〈Browser, Browser〉= Browser.input<int>()

  val s :〈Service, Service〉= Service.input<Array<int>>()

  val leaked :〈B ∧ S, B ∨ S〉= b ∊ s

  Browser.output(leaked)

10

Check:

- leaked has less confidentiality than Browser

- leaked has more integrity than Browser

- 〈B ∧ S, B ∨ S〉⊑〈B, B〉

Both checks fail!



Downgrades Specify Intended Security Policy

fun check_passwords() { 
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Downgrades Specify Intended Security Policy

fun check_passwords() { 

  val b :〈B, B ∧ S〉= endorse(Browser.input(), Service) 

  val s :〈B, B ∧ S〉= endorse(Service.input(), Browser) 

  val leaked :〈B ∧ S, B ∧ S〉= b ∊ s 

  val leaked’ :〈B, B ∧ S〉= declassify(leaked, Browser) 

  Browser.output(leaked') 
}

11

“I know this reveals some data to 
Browser. That’s intended.”

“Service/Browser accepts this data, 
whatever it is.”



Data labels specify confidentiality/integrity requirements. 
Assign labels to hosts to capture confidentiality/integrity 

guarantees.
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val x@Replication(A, B) = e 
val y@C = x 

• Computation and storage replicated


• Verify all replicas are consistent


• Low confidentiality, high integrity:


label(Replication(A, B)) =〈A ∨ B, A ∧ B〉

Replication

13

val x1 = e

A

val x2 = e

B

assert x1 == x2 
val y = x1

C
x1 x2

Replication(A, B)
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Host Confidentiality Integrity

h h h

Replication(h1,  h2) h1 ∨ h2 h1 ∧ h2

MPC(h1,  h2) h1 ∧ h2 h1 ∧ h2

Semi-honest MPC(h1,  h2) h1 ∧ h2 h1 ∨ h2

Commitment(p, v) p p ∧ v

ZKP(p, v) p p ∧ v



Connecting Data and Host Labels

• A host can perform a computation if it has higher confidentiality & integrity:


label(host) ⇒ label(variable)

15

val a@A :〈A, A〉= ... 

val b@A :〈A ∨ B, A〉= ... 

val c@A :〈A ∧ B, A〉= ... 

val d@MPC(A, B) :〈A ∧ B, A ∧ B〉= ...

label(A) =〈A, A〉 

label(MPC(A, B)) =〈A ∧ B, A ∧ B〉



Connecting Data and Host Labels

• A host can perform a computation if it has higher confidentiality & integrity:


label(host) ⇒ label(variable)

15

val a@A :〈A, A〉= ... 

val b@A :〈A ∨ B, A〉= ... 

val c@A :〈A ∧ B, A〉= ... 

val d@MPC(A, B) :〈A ∧ B, A ∧ B〉= ...

label(A) =〈A, A〉 

label(MPC(A, B)) =〈A ∧ B, A ∧ B〉



Connecting Data and Host Labels

• A host can perform a computation if it has higher confidentiality & integrity:


label(host) ⇒ label(variable)

15

val a@A :〈A, A〉= ... 

val b@A :〈A ∨ B, A〉= ... 

val c@A :〈A ∧ B, A〉= ... 

val d@MPC(A, B) :〈A ∧ B, A ∧ B〉= ...

label(A) =〈A, A〉 

label(MPC(A, B)) =〈A ∧ B, A ∧ B〉



Connecting Data and Host Labels

• A host can perform a computation if it has higher confidentiality & integrity:


label(host) ⇒ label(variable)

15

val a@A :〈A, A〉= ... 

val b@A :〈A ∨ B, A〉= ... 

val c@A :〈A ∧ B, A〉= ... 

val d@MPC(A, B) :〈A ∧ B, A ∧ B〉= ...

label(A) =〈A, A〉 

label(MPC(A, B)) =〈A ∧ B, A ∧ B〉
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val a@A :〈A, A〉= ... 
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Cost Model & Optimal Host Selection

• Labels eliminate insecure host assignments


• This still leaves multiple valid host assignments


• Viaduct solves an optimization problem based on a cost model


• Avoid MPC and ZKP; prefer Local and Replication


• Minimize data movement between hosts

16



Underdetermined Protocol

fun check_passwords() { 
  val b@Browser = endorse(Browser.input(), Service) 
  val s@Service = endorse(Service.input(), Browser) 
  val leaked@MPC(Browser, Service) = b ∊ s 
  val leaked’@MPC(B…, S…) = declassify(leaked, Browser) 
  Browser.output(leaked’) 
}
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Implicit communication



Choreographies: Manifesting Communication
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Multiple ways of inserting communication events.
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Source Program + security policy
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Distributed Program + cryptography
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Host Selection

Communication 
Manifestation

We covered 
protocol synthesis.
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val b@Browser = Browser.input() 
Browser.b ⇝ MPC(B…, S…).b’ 
... 
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Cryptographic Instantiation
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...

Browser

...

Service
val b’ = receive B… 
val s’ = receive S… 
val l = b' ∊ s’ 
send l to Browser

MPC(Browser, Service)
IDEAL MODEL

REAL IMPLEMENTATION

User Passwords 

MPC Library

Browser
Database 

MPC Library

Service



Compilation Summary
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MPC 
(Alice, Bob)

Commitment 
(Bob, Chuck)

Replication 
(Alice, Bob, Chuck)Alice Bob Chuck

val x = e 
...Source Program

val x@Alice = e 
Alice.x ⇝ MPC(A…, B…).y 
...

Choreography

Endpoint Projection

Instantiation

Protocol Synthesis

Bob

MPC
Local Repli.

Commit.

Alice

MPC
Local Repli.

Commit.

Chuck

MPC
Local Repli.

Commit.



Implementation & Scalability

• PLDI ’21. Viaduct: An Extensible, Optimizing Compiler for Secure Distributed 
Programs.


• Implements: Replication, Commitment, MPC via ABY, ZKP via libsnark


• Extensible: can easily add more mechanisms


• Optimizing: cost model + constrained optimization problem


• Expressive: Label inference, label polymorphic functions


• Viable: Evaluation and benchmarks

23



Optimization Impact over Naive MPC

24

Benchmark Protocols Speedup over Naive MPC
HHI score Local, MPC 67%

Biometric Match Local, MPC 180%
Historical Millionaires Local, MPC 100%

k-Means MPC 150%
Median Replication, MPC 1700%

Two-Round Bidding Local, MPC 470%
Battleship Replication, ZKP —

Interval ZKP, MPC —



Compiler Correctness
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Cryptography is notoriously easy to get wrong. 

We must prove the correctness of Viaduct.
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When is a Compiler Correct?

• Viaduct is only useful if developers can reason at the source level.

• Many properties of interest:


• Functional correctness: If Alice inputs 5 and Bob 7, the output is 12.


• Security: Alice cannot infer x; Bob cannot influence y.


• Corruption: When Chuck is malicious…

• The compiler should preserve all properties!
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Robust Hyperproperty Preservation (RHP)

• Very strong compiler correctness criterion


• Abate et al. (2019). Journey Beyond Full Abstraction. CSF


• “Every hyperproperty source program has, the target has also.”


• Hyperproperties: safety, liveness, noninterference, etc.


• RHP is the right notion of correctness for Viaduct

28



Proof Requirements

1. Property Preserving: facilitates reasoning at source level


2. Extensible: does not fix set of cryptographic protocols


3. Compositional: interfaces with proofs of existing cryptography

29



Universal Composability (UC)

• A framework for defining and proving security of cryptographic protocols


• Sequential and parallel composition maintains UC security


• UC simulation implies RHP


• Patrignani et al. (2019). Universal Composability is Secure Compilation. 
CoRR


•  We independently verify UC implies RHP for our framework.

30
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Defining Security with Ideal Functionalities

31

val m = recv Alice 
send len(m) to Adv 
send m to Bob

Secure Channel (Alice, Bob)

val x = Alice.input 
send x to SC(A…, B…)

Alice

val x = recv SC(A…, B…)

Bob

Leaks length of message 
but nothing else

Adversary cannot change 
message

“Obviously secure”



UC Simulation
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val m = recv Alice 
send len(m) to Adv 
send m to Bob

Secure Channel (Alice, Bob)

val x = Alice.input 
send x to SC(A…, B…)

Alice

val x = recv SC(A…, B…)

Bob

REAL IDEAL

Bob

Alice

Insecure Network

Encryption MAC

Encryption MAC

≤
(simulates)



UC Simulation
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≈

Every attack on the real system can be 
translated to an attack on the ideal system.

Env

Adv

Network
Alice
Enc

Bob
Enc

REAL

Sim

SC(A, B)Alice Bob

IDEAL

Adv

Cannot distinguish 
real from ideal
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UC Composition
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≤Bob
MPC

Alice
MPC

MPC 
(Alice, Bob)

≤

THEN
MPC 

(Alice, Bob)

ZKP FHEZKP FHE

Bob
MPC

Alice
MPCSubprotocol



Structure of a UC Proof

• Formally, UC states:


• 


• To prove UC simulation:


• Define real protocol and ideal functionality


• Construct a Simulator given an arbitrary Adversary


• Come up with invariant maintained throughout execution


• Show invariant implies bisimulation from perspective of Environment

∀Adv∃Sim∀Env ⋅ Adv ∥ Real ∼Env Sim ∥ Ideal

35



Show Compiled Code Simulates Source
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Source 
Program≤

REAL IDEAL

Alice
MPC

Local
Repli.

Bob
MPC

Local
Repli.

Cryptographic


Distributed


Concurrent

Information flow


Centralized


Sequential



IDEAL

≤≤

HYBRID

≤

REAL

Source 
ProgramChoreography

Replication 
(Alice, Bob)

MPC 
(Alice, Bob)

BobAlice

Bob

Repli.
MPC

Local

Alice

Repli.
MPC

Local

SynthesisProjectionInstantiation

UC Simulation is Transitive
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Correctness of Cryptographic Instantiation

38

IDEAL

≤≤

HYBRID

≤

REAL

Source 
ProgramChoreography

Replication 
(Alice, Bob)

MPC 
(Alice, Bob)

BobAlice

Bob

Repli.
MPC

Local

Alice

Repli.
MPC

Local

SynthesisProjectionInstantiation
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≤Bob
ABY

Alice
ABY

ABY Spec 
(Alice, Bob)

• Verify library interface matches our ideal functionality

≤ MPC 
(Alice, Bob)

ABY Spec 
(Alice, Bob)
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≤
MPC 

(Alice, Bob)

ZKP 
(Bob, Chuck)

Bob
ABY

Alice
ABY

ZKP 
(Bob, Chuck)

≤
Bob

 ABY

libsnark

Alice
ABY

Chuck
libsnark



Correctness of Endpoint Projection

41

IDEAL

≤≤

HYBRID

≤

REAL

Source 
ProgramChoreography

Replication 
(Alice, Bob)

MPC 
(Alice, Bob)

BobAlice

Bob

Repli.
MPC

Local

Alice

Repli.
MPC

Local

SynthesisProjectionInstantiation



Appeal to Choreography Literature

• This is exactly what choreography literature tries to prove


• “Soundness and completeness of endpoint projection”


• Luís Cruz-Filipe et al. (2022). A Formal Theory of Choreographic 
Programming. CoRR


• Choreographies are alternative representations of distributed systems


• But they have the same exact behavior (i.e., traces)
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val x@Alice = input 
Bob.output(2)

Choreographyval x = input

Alice

output(2)

Bob ≤

Adversary can step  
Bob before Alice

Simulator can step  
Bob before Alice
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Choreographies Model Communication

44

val x@Alice = input 
Alice.x ⇝ Bob.y

Choreography
val x = input 
send x to Bob

Alice

val y = receive Alice

Bob ≤

Generates message 
readable by Adversary

Generates message 
readable by Simulator



Choreographies and Projection are Bisimilar
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Choreographies and Projection are Bisimilar

45

~ Choreography

Replication 
(Alice, Bob)

MPC 
(Alice, Bob)

BobAlice

Adv Sim = Adv



Correctness of Protocol Synthesis

46

IDEAL

≤≤

HYBRID

≤

REAL

Source 
ProgramChoreography

Replication 
(Alice, Bob)

MPC 
(Alice, Bob)

BobAlice

Bob

Repli.
MPC

Local

Alice

Repli.
MPC

Local

SynthesisProjectionInstantiation



Comparing Choreography to Source
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Comparing Choreography to Source

• Similar:


• Abstract away cryptography


• Centralized
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Comparing Choreography to Source

• Similar:


• Abstract away cryptography


• Centralized

47

val x = e 
Bob.output(2) 

Source Program

≤val x@Alice = e 
Bob.output(2) 
Alice.x ⇝ Bob.y

Choreography

• Different:


1. Locations & explicit communication


2. Concurrency



≤≤Choreography

Concurrent 

Visible 
Communication

Ideal 
Choreography

Concurrent 

Invisible 
Communication

Source 
Program

Sequential 

No 
Communication

Sequential 
Choreography

Sequential 

Invisible 
Communication

≤

Break Up Proof Using Transitivity

Define intermediate languages with altered semantics.
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≤≤Choreography

Concurrent 
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Choreography

Concurrent 

Invisible 
Communication

Source 
Program
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No 
Communication

Sequential 
Choreography

Sequential 

Invisible 
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≤

Correctness of Idealization
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Explicit Communication: Confidentiality
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Explicit Communication: Confidentiality

• Generates event in trace


• If Bob is corrupted:


• x is leaked to Adversary
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Explicit Communication: Confidentiality

• Generates event in trace


• If Bob is corrupted:


• x is leaked to Adversary

50

val x = Alice.input 

Source Program

≤val x@Alice = input 
Alice.x ⇝ Bob.y

Choreography

No visible events

/



Explicit Communication: Integrity
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Explicit Communication: Integrity

51

val x = 1 
Bob.output(x)

Source Program

val x@Alice = 1 
Alice.x ⇝ Bob.x’ 
Bob.output(x’)

Choreography
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Explicit Communication: Integrity

• If Alice is corrupted:


• Adversary controls x’

51

val x = 1 
Bob.output(x)

Source Program

val x@Alice = 1 
Alice.x ⇝ Bob.x’ 
Bob.output(x’)
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Explicit Communication: Integrity

• If Alice is corrupted:


• Adversary controls x’

51

val x = 1 
Bob.output(x)

Source Program

val x@Alice = 1 
Alice.x ⇝ Bob.x’ 
Bob.output(x’)

Choreography

Always outputs 1

42

ALICE CORRUPTED

≤/



Information Flow Typing to the Rescue

• Define information flow type system for choreographies 


• Require protocol synthesis to output well-typed choreographies

52

val x@Alice = 1 
Alice.x ⇝ Bob.x’ 
Bob.output(x’)

Integrity Violation

Bob doesn’t trust Alice 
with integrity

val x@Alice = input 
Alice.x ⇝ Bob.y

Confidentiality Violation

Alice doesn’t trust Bob 
with confidentiality



Downgrades Relax Security Policy

• Use declassify/endorse to specify intended policy:

53

val x@Alice = input 
val x’ = decl(x, Bob) 
Alice.x’ ⇝ Bob.y

Allow Send to Bob

val x@Alice = 1 
Alice.x ⇝ Bob.x’ 
val x’’ = end(x, Bob) 
Bob.output(x’’)

Allow Receive from Alice



Downgrades as Adversarial Interaction

54



Downgrades as Adversarial Interaction

• We model downgrades as communication with the Adversary 

• declassify(x, Host): send x to Adversary (if Host is public)


• endorse(x, Host): receive x from Adversary (if x is untrusted)
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Downgrades as Adversarial Interaction

• We model downgrades as communication with the Adversary 

• declassify(x, Host): send x to Adversary (if Host is public)


• endorse(x, Host): receive x from Adversary (if x is untrusted)

• Commonplace in UC:

54

val m = recv Alice 
send len(m) to Adv 
send m to Bob

Secure Channel (Alice, Bob)
val m = recv Alice 
declassify(len(m)) 
send m to Bob

Secure Channel (Alice, Bob)



Verifying the Type System

• Type system ensures


• Secret data is not sent to public hosts


• Untrusted data does not influence trusted hosts


• How do we know?
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Ideal Choreographies

Communication generates 
external events


Untrusted hosts produce 
arbitrary data


declassify/endorse internal
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Ideal Choreographies

Communication generates 
external events


Untrusted hosts produce 
arbitrary data


declassify/endorse internal

56

Same Code

Ideal Choreography

≤Same Code

Choreography

Communication generates 
internal events


Untrusted data replaced with 
dummy value (i.e., 0)


declassify/endorse external


All corruption localized to declassify/endorse.



Real Simulates Ideal
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Real Simulates Ideal

57

≤
Ideal 

Choreography
Real 

Choreography

Adv Simulator

Adv
Public View of 

Real 
Choreography

Agree on 
public values

Agree on 
trusted values

Simulator uses


• declassify to recreate 
messages no longer leaked


• endorse to corrupt data no 
longer corruptible



≤≤Choreography

Concurrent 

Visible 
Communication

Ideal 
Choreography

Concurrent 

Invisible 
Communication

Source 
Program

Sequential 

No 
Communication

Sequential 
Choreography

Sequential 

Invisible 
Communication

≤

Correctness of Sequentialization
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Unrestricted Concurrency Violates Security
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val g’ = endorse(guess, C) 
val s’ = decl(secret, C)

Source Program

I picked a secret number. 
You guess, then I reveal.



Unrestricted Concurrency Violates Security

59

val g’ = endorse(guess, C) 
val s’ = decl(secret, C)

Source Program

val g’@S1 = endorse(guess, C) 
val s’@S2 = decl(secret, C)

Insecure Choreography

I picked a secret number. 
You guess, then I reveal.

This choreography can  
reorder these events!

≤/



Require Synchronization
• A novel type system for choreographies that checks synchronization


• Require protocol synthesis to output well-synchronized choreographies


• Requires minimal synchronization


• Outputs (declassify) must be ordered wrt. prior inputs (endorse)


• We do not order internal events, inputs wrt. inputs etc.
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• Requires minimal synchronization


• Outputs (declassify) must be ordered wrt. prior inputs (endorse)


• We do not order internal events, inputs wrt. inputs etc.
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val g’@S1 = endorse(guess, C) 
S1.0 ⇝ S2._ 
val s’@S2 = decl(secret, C)

Secure Choreography

val g’@S1 = endorse(guess, C) 
val s’@S2 = decl(secret, C)

Insecure Choreography



Ideal Simulates Sequential
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val x = S2.input() 
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Sequential Choreography
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Ideal Simulates Sequential
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val x = S2.input() 
val g’ = endorse(guess, C) 
S1.0 ⇝ S2._ 
val s’ = decl(secret, C)

Sequential Choreography

val x = S2.input() 
val g’@S1 = endorse(guess, C) 
S1.0 ⇝ S2._ 
val s’@S2 = decl(secret, C)

Concurrent Choreography

≤
Must evaluate: x, g’, s’May evaluate: g’, x, s’



Ideal Simulates Sequential
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Ideal Simulates Sequential

• Well-synchronized choreography simulates fully sequential choreography
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Ideal Simulates Sequential

• Well-synchronized choreography simulates fully sequential choreography

• Two choreographies can fall out of sync, but remain joinable:


• They only differ by internal actions


• They can perform the same output at the same time
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Ideal Simulates Sequential

• Well-synchronized choreography simulates fully sequential choreography

• Two choreographies can fall out of sync, but remain joinable:


• They only differ by internal actions


• They can perform the same output at the same time

• Proved via confluence and a diamond lemma

62

We prove con�uence through a diamond lemma, which allows reordering indepen-

dent actions.

De�nition 3.8.21 (Independent Actions). Actions 01 and 02 are independent, written

01 ?? 02, if one is an input while the other is an output, or they are on di�erent channels.

We write tr1 ?? tr2 if 01 ?? 02 for all 01 2 tr1 and 02 2 tr2.

Lemma 3.8.22 (Diamond for Processes). If F
tr1��!c

i F1,F
tr2��!c

i F2, and tr1 ?? tr2, then

F1
tr2��!c

i F
0 and F2

tr1��!c
i F

0 for some F 0. Diagrammatically:

F

F1 F2

9F 0

tr1 tr2

tr2 tr1

Lemma 3.8.22 does the heavy lifting when proving multiple con�uence results below,

and requires quite a bit of work to show. We �rst prove a diamond lemma for statements,

and then lift it to processes.

Lemma 3.8.23 (Half Diamond for Statements). If B
01�!i B1, B

02�!c
i B2, and 01 ?? 02, then

B1
02�!c

i B
0 and B2

01�!i B0 for some B0.

Proof. By case analysis on B
02�!c

i B2.

• Case B�S��������. Contradicts 01 ?? 02.

• Case B�D����. By case analysis on the evaluation context followed by inversion

on B
01�!i B1. The step for 01 involves only the head statement and ignores all future

statements, whereas the step for 02 ignores the head statement and involves only

a statement in the future. Thus, they can be performed in sequence in either order

without changing the end result.
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Dropping Host Annotations (Bookkeeping)
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Host Annotations Don’t Do Anything
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Host Annotations Don’t Do Anything

64

val x = e 
Bob.output(x)

Source Program

≤val x@Alice = e 
Alice.x ⇝ Bob.y 
Bob.output(y)

Ideal, Sequential 
Choreography

Only differ in number of internal steps.

Internal step
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Conclusion

66

• Model cryptographic primitives as ideal hosts


• Data labels capture security requirements


• Host labels capture security guarantees  

• Choreographies simplify distributed reasoning 

• UC allows separate proofs for protocol synthesis 
and cryptographic instantiation


• UC simulation implies a strong compiler 
correctness condition (RHP)
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