Provably Correct Compilation for Distributed Cryptographic Applications

Josh Acay — July 19, 2023

Secure Distributed Applications

Secure Distributed Applications

Secure Distributed Applications

Local Computation

+

Replication

Zero-Knowledge
Proofs (ZKP)

Secure Multiparty Computation (MPC)

Fully Homomorphic Encryption (FHE)

Difficult and error prone.

Viaduct: Let the Compiler Worry About Cryptography

Leaked Password Checking

Browser

User Passwords

Service

Database of Leaked Passwords

Service has a database of leaked passwords.

Browser wants to know if passwords are compromised.

Server-Side Computation is Insecure

Server-Side Computation is Insecure

Service learns user passwords!

Server-Side Computation is Insecure

Service learns user passwords!

Sending database to Browser is not secure either.

The Viaduct Approach

```
host Browser host Service
```

```
fun check_passwords() {
  val b = Browser.input<int>()
  val s = Service.input<Array<int>>()
  val leaked = b ∈ s
  Browser.output(leaked)
}
```

The Viaduct Approach

```
host Browser host Service
```

Single program

```
fun check_passwords() {
  val b = Browser.input<int>()
  val s = Service.input<Array<int>>()
  val leaked = b ∈ s
  Browser.output(leaked)
}
```

Sequential

Doesn't mention crypto

```
host Browser host Service
```

```
fun check_passwords() {
  val b@Browser = Browser.input<int>()
  val s@Service = Service.input<Array<int>>()
  val leaked@MPC(Browser, Service) = b ∈ s
  Browser.output(leaked)
}
```

```
host Browser
host Service
                                        How does Viaduct
                                        decide this needs
                                         cryptography?
fun check_passwords() {
  val b@Browser = Browser.input<int>()
  val s@Service = Service.input<Array<int>>()
  val leaked@MPC(Browser, Service) = b ∈ s
  Browser.output(leaked)
```

```
host Browser
host Service
                                          How does Viaduct
                                          decide this needs
                                           cryptography?
fun check_passwords() {
  val b@Browser = Browser.input<int>()
  val s@Service = Service.input<Array<int>>()
  val leaked@MPC(Browser, Service) = b ∈ s
  Browser.output(leaked)
                                       Intutively, involves
                                      data from both hosts.
```

```
host Browser
host Service
                                            How does Viaduct
                                            decide this needs
                                             cryptography?
fun
      We need a way to formally specify security policies.
  va
       reakeumire (browser, service)
  Browser.output(leaked)
                                          Intutively, involves
                                        data from both hosts.
```

Information Flow Labels

Pair of confidentiality and integrity:

$$\mathcal{C} = \langle confidentiality, integrity \rangle$$

Each component a boolean formula over hosts

Ordered by implication: $A \land B \Rightarrow A \Rightarrow A \lor B$


```
fun check_passwords() {
  val b : (Browser, Browser) = Browser.input<int>()
```

```
fun check_passwords() {
  val b : (Browser, Browser) = Browser.input<int>()
  val s : (Service, Service) = Service.input<Array<int>()
```

```
fun check_passwords() {
  val b : ⟨Browser, Browser⟩ = Browser.input<int>()
  val s : ⟨Service, Service⟩ = Service.input<Array<int>>()
  val leaked : ⟨B ∧ S, B ∨ S⟩ = b ∈ s
```

```
fun check_passwords() {
  val b : ⟨Browser, Browser⟩ = Browser.input<int>()
  val s : ⟨Service, Service⟩ = Service.input<Array<int>>()
  val leaked : ⟨B ∧ S, B ∨ S⟩ = b ∈ s
  Browser.output(leaked)
```

```
fun check_passwords() {
  val b : (Browser, Browser) = Browser.input<int>()
  val s : (Service, Service) = Service.input<Array<int>>()
  val leaked : (B \( \text{S} \), B \( \text{S} \)) = b \( \in \text{S} \)
  Browser.output(leaked)
```

- Check:
- leaked has less confidentiality than Browser
- leaked has more integrity than Browser
- $\langle B \wedge S, B \vee S \rangle \sqsubseteq \langle B, B \rangle$

```
fun check_passwords() {
  val b : ⟨Browser, Browser⟩ = Browser.input<int>()
  val s : ⟨Service, Service⟩ = Service.input<Array<int>>()
  val leaked : ⟨B ∧ S, B v S⟩ = b ∈ s
  Browser.output(leaked)
```

Check:

- leaked has less confidentiality than Browser
- leaked has more integrity than Browser
- $\langle B \wedge S, B \vee S \rangle \sqsubseteq \langle B, B \rangle$

Both checks fail!

Downgrades Specify Intended Security Policy

```
fun check_passwords() {
  val b : \langle B, B \land S \rangle = endorse(Browser.input(), Service)
  val s: \langle B, B \wedge S \rangle = endorse(Service.input(), Browser)
  val leaked: \langle B \land S, B \land S \rangle = b \in S
  val leaked': \langle B, B \wedge S \rangle = declassify(leaked, Browser)
  Browser.output(leaked')
```

Downgrades Specify Intended Security Policy

```
fun check_passwords() {
  val b : \langle B, B \land S \rangle = endorse(Browser.input(), Service)
  val s: \langle B, B \wedge S \rangle = endorse(Service.input(), Browser)
  val leaked: \langle B \land S, B \land S \rangle = b \in S
  val leaked': \langle B, B \land S \rangle = | declassify(leaked, Browser)|
                                           "I know this reveals some data to
  Browser.output(leaked')
                                              Browser. That's intended."
```

Downgrades Specify Intended Security Policy

```
"Service/Browser accepts this data,
fun check_passwords() {
                                                  whatever it is."
  val b : \langle B, B \wedge S \rangle = endorse(Browser.input(), Service)
  val s : (B, B \ S) = endorse(Service.input(), Browser)
  val leaked: \langle B \land S, B \land S \rangle = b \in S
  val leaked': \langle B, B \wedge S \rangle = |declassify(leaked, Browser)|
                                         "I know this reveals some data to
  Browser.output(leaked')
                                             Browser. That's intended."
```

Data labels specify confidentiality/integrity requirements.

Assign labels to *hosts* to capture confidentiality/integrity *guarantees*.

Replication

```
val x@Replication(A, B) = e
val y@C = x
```

- Computation and storage replicated
- Verify all replicas are consistent
- Low confidentiality, high integrity:

label(Replication(A, B)) =
$$\langle A \vee B, A \wedge B \rangle$$

Replication(A, B)

Host	Confidentiality	Integrity
h	h	h
Replication(h ₁ , h ₂)	$h_1 \vee h_2$	$h_1 \wedge h_2$

Host	Confidentiality	Integrity
h	h	h
Replication(h ₁ , h ₂)	$h_1 \vee h_2$	$h_1 \wedge h_2$
$MPC(h_1, h_2)$	$h_1 \wedge h_2$	$h_1 \wedge h_2$

Host	Confidentiality	Integrity
h	h	h
Replication(h ₁ , h ₂)	$h_1 \vee h_2$	$h_1 \wedge h_2$
$MPC(h_1, h_2)$	$h_1 \wedge h_2$	$h_1 \wedge h_2$
Semi-honest MPC(h ₁ , h ₂)	$h_1 \wedge h_2$	$h_1 \vee h_2$

Host	Confidentiality	Integrity
h	h	h
Replication(h ₁ , h ₂)	$h_1 \vee h_2$	$h_1 \wedge h_2$
$MPC(h_1, h_2)$	$h_1 \wedge h_2$	$h_1 \wedge h_2$
Semi-honest MPC(h ₁ , h ₂)	$h_1 \wedge h_2$	$h_1 \vee h_2$
Commitment(p, v)	p	PΛV

Host Labels

Host	Confidentiality	Integrity
h	h	h
Replication(h ₁ , h ₂)	$h_1 \vee h_2$	$h_1 \wedge h_2$
$MPC(h_1, h_2)$	$h_1 \wedge h_2$	$h_1 \wedge h_2$
Semi-honest MPC(h ₁ , h ₂)	$h_1 \wedge h_2$	$h_1 \vee h_2$
Commitment(p, v)	P	p \ v
ZKP(p, v)	p	PΛV

$$label(host) \Rightarrow label(variable)$$

```
val a@A : \langle A, A \rangle = \dots

val b@A : \langle A \lor B, A \rangle = \dots

label(MPC(A, B)) = \langle A \land B, A \land B \rangle

val d@MPC(A, B) : \langle A \land B, A \land B \rangle = \dots
```

```
val a@A : \langle A, A \rangle = \dots

val b@A : \langle A \lor B, A \rangle = \dots

label(A) = \langle A, A \rangle

label(MPC(A, B)) = \langle A \land B, A \land B \rangle

val d@MPC(A, B) : \langle A \land B, A \land B \rangle = \dots
```

$$label(host) \Rightarrow label(variable)$$

```
val a@A : \langle A, A \rangle = \dots

label(A) = \langle A, A \rangle

val b@A : \langle A \lor B, A \rangle = \dots

label(MPC(A, B)) = \langle A \land B, A \land B \rangle

val d@MPC(A, B) : \langle A \land B, A \land B \rangle = \dots
```

$$label(host) \Rightarrow label(variable)$$

```
val a@A : \langle A, A \rangle = \dots
label(A) = \langle A, A \rangle
val b@A : \langle A \lor B, A \rangle = \dots
label(MPC(A, B)) = \langle A \land B, A \land B \rangle
val d@MPC(A, B) : \langle A \land B, A \land B \rangle = \dots
```

$$label(host) \Rightarrow label(variable)$$

```
val a@A : \langle A, A \rangle = \ldots
val b@A : \langle A \rangle B, A \rangle = \ldots
val c@A : \langle A \rangle B, A \rangle = \ldots
val d@MPC(A, B) : \langle A \rangle B, A \rangle B \rangle = \ldots
val d@MPC(A, B) : \langle A \rangle B, A \rangle B \rangle = \ldots
```

Cost Model & Optimal Host Selection

- Labels eliminate insecure host assignments
- This still leaves multiple valid host assignments
- Viaduct solves an optimization problem based on a cost model
 - Avoid MPC and ZKP; prefer Local and Replication
 - Minimize data movement between hosts

Underdetermined Protocol

```
fun check_passwords() {
  val b@Browser = endorse(Browser.input(), Service)
  val s@Service = endorse(Service.input(), Browser)
  val leaked@MPC(Browser, Service) = b ∈ s
  val leaked'@MPC(B..., S...) = declassify(leaked, Browser)
  Browser.output(leaked')
}
```

Underdetermined Protocol

```
fun check_passwords() {
  val b@Browser = endorse(Browser.input(), Service)
  val s@Service = endorse(Service.input(), Browser)
  val leaked@MPC(Browser, Service) = b ∈ s
  val leaked'@MPC(B..., S...) = declassify(leaked, Browser)
  Browser.output(leaked')
}

Implicit communication
```

Choreographies: Manifesting Communication

```
fun check_passwords() {
  val b@Browser = endorse(Browser.input(), Service)
  Browser.b → MPC(Browser, Service).b'
  val s@Service = endorse(Service.input(), Browser)
  Service.s → MPC(Browser, Service).s'
  val leaked@MPC(Browser, Service) = b' ∈ s'
  val leaked'@MPC(B..., S...) = declassify(leaked, Browser)
 MPC(Browser, Service).leaked' - Browser.leaked''
  Browser.output(leaked'')
```

Choreographies: Manifesting Communication

```
fun check_passwords() {
  val b@Browser = endorse(Browser.input(), Service)
  Browser.b → MPC(Browser, Service).b'
  val s@Service = endorse(Service.input(), Browser)
  Service.s → MPC(Browser, Service).s'
  val leaked@MPC(Browser, Service) = b' ∈ s'
  val leaked'@MPC(B..., S...) = declassify(leaked, Browser)
 MPC(Browser, Service).leaked' - Browser.leaked''
  Browser.output(leaked'')
```

Multiple ways of inserting communication events.

Compilation Overview

Source Program + security policy

Protocol Synthesis

Choreography

Endpoint Projection

Idealized Distributed Program

Cryptographic Instantiation

Distributed Program + cryptography

Label Inference

Host Selection

Communication Manifestation

Compilation Overview

Source Program + security policy

Protocol Synthesis

Choreography

Endpoint Projection

Idealized Distributed Program

Cryptographic Instantiation

Distributed Program + cryptography

Label Inference

Host Selection

Communication Manifestation

We covered protocol synthesis.

```
val b@Browser = Browser.input()
                       Browser.b → MPC(B..., S...).b'
                       Browser.output(leaked'')
                              project MPC
                                                         project Service
             project Browser
val b = input()
send b to MPC(B..., S...)
                                val b' = receive B...
output(leaked'')
                                 MPC(Browser, Service)
                                                                     Service
         Browser
```

```
val b@Browser = Browser.input()
                       Browser.b → MPC(B..., S...).b'
                       Browser.output(leaked'')
                              project MPC
             project Browser
                                                         project Service
val b = input()
send b to MPC(B..., S...)
                                val b' = receive B...
output(leaked'')
                                 MPC(Browser, Service)
                                                                     Service
         Browser
```

```
val b@Browser = Browser.input()
                      Browser.b → MPC(B..., S...).b'
                       Browser.output(leaked'')
                              project MPC
             project Browser
                                                         project Service
val b = input()
send b to MPC(B..., S...)
                                val b' = receive B...
output(leaked'')
                                 MPC(Browser, Service)
                                                                     Service
         Browser
```

```
val b@Browser = Browser.input()
                      Browser.b → MPC(B..., S...).b'
                      Browser.output(leaked'')
                              project MPC
                                                         project Service
             project Browser
val b = input()
send b to MPC(B..., S...)
                               val b' = receive B...
                                output(leaked'')
                                MPC(Browser, Service)
                                                                    Service
         Browser
```

Cryptographic Instantiation

IDEAL MODEL

Compilation Summary

Commit.

```
val x = e
     Source Program
                                                                       Protocol Synthesis
                         val x@Alice = e
                         Alice x -> MPC(A..., B...) y
        Choreography
                         Endpoint Projection
                                              Commitment
          MPC
                              Replication
Alice
                                                            Chuck
                    Bob
                                              (Bob, Chuck)
                           (Alice, Bob, Chuck)
       (Alice, Bob)
                                                                          Instantiation
                                                       Chuck
     Alice
                               Bob
                                  MPC
        MPC
                                                            MPC
                                 Repli.
                                                           Repli.
Local
        Repli.
                                                   Local
                         Local
```

Commit.

Commit.

Implementation & Scalability

- PLDI '21. Viaduct: An Extensible, Optimizing Compiler for Secure Distributed Programs.
 - Implements: Replication, Commitment, MPC via ABY, ZKP via libsnark
 - Extensible: can easily add more mechanisms
 - Optimizing: cost model + constrained optimization problem
 - Expressive: Label inference, label polymorphic functions
 - Viable: Evaluation and benchmarks

Optimization Impact over Naive MPC

Benchmark	Protocols	Speedup over Naive MPC
HHI score	Local, MPC	67%
Biometric Match	Local, MPC	180%
Historical Millionaires	Local, MPC	100%
k-Means	MPC	150%
Median	Replication, MPC	1700%
Two-Round Bidding	Local, MPC	470%
Battleship	Replication, ZKP	
Interval	ZKP, MPC	

Compiler Correctness

Cryptography is notoriously easy to get wrong.

We must prove the correctness of Viaduct.

When is a Compiler Correct?

Viaduct is only useful if developers can reason at the source level.

When is a Compiler Correct?

- Viaduct is only useful if developers can reason at the source level.
- Many properties of interest:
 - Functional correctness: If Alice inputs 5 and Bob 7, the output is 12.
 - Security: Alice cannot infer x; Bob cannot influence y.
 - Corruption: When Chuck is malicious...

When is a Compiler Correct?

- Viaduct is only useful if developers can reason at the source level.
- Many properties of interest:
 - Functional correctness: If Alice inputs 5 and Bob 7, the output is 12.
 - Security: Alice cannot infer x; Bob cannot influence y.
 - Corruption: When Chuck is malicious...
- The compiler should preserve all properties!

Robust Hyperproperty Preservation (RHP)

- Very strong compiler correctness criterion
 - Abate et al. (2019). Journey Beyond Full Abstraction. CSF
 - "Every hyperproperty source program has, the target has also."
 - Hyperproperties: safety, liveness, noninterference, etc.
- RHP is the right notion of correctness for Viaduct

Proof Requirements

- 1. Property Preserving: facilitates reasoning at source level
- 2. Extensible: does not fix set of cryptographic protocols
- 3. Compositional: interfaces with proofs of existing cryptography

Universal Composability (UC)

- A framework for defining and proving security of cryptographic protocols
- Sequential and parallel composition maintains UC security
- UC simulation implies RHP
 - Patrignani et al. (2019). Universal Composability is Secure Compilation.
 CoRR
 - We independently verify UC implies RHP for our framework.

Secure Channel (Alice, Bob)

```
val m = recv Alice
send len(m) to Adv
send m to Bob
```

Secure Channel (Alice, Bob)

```
val m = recv Alice
send len(m) to Adv
send m to Bob
```

Alice

```
val x = Alice.input
send x to SC(A..., B...)
```

Bob

"Obviously secure"

Secure Channel (Alice, Bob)

val m = recv Alice
send len(m) to Adv
send m to Bob

Alice

val x = Alice.input
send x to SC(A..., B...)

Bob

val x = recv SC(A..., B...)

"Obviously secure"

Leaks length of message but nothing else

Secure Channel (Alice, Bob)

```
val m = recv Alice
send len(m) to Adv
send m to Bob
```

Alice

```
val x = Alice.input
send x to SC(A..., B...)
```

Bob

$$val x = recv SC(A..., B...)$$

"Obviously secure"

Leaks length of message but nothing else

Adversary cannot change message

Secure Channel (Alice, Bob)

val m = recv Alice
send len(m) to Adv
send m to Bob

Alice

val x = Alice.input
send x to SC(A..., B...)

Bob

val x = recv SC(A..., B...)

UC Simulation

REAL
Alice
Encryption MAC

Insecure Network

Bob

Encryption

MAC

(simulates)

IDEAL

Secure Channel (Alice, Bob)

val m = recv Alice
send len(m) to Adv
send m to Bob

Alice

val x = Alice.input
send x to SC(A..., B...)

Bob

val x = recv SC(A..., B...)

UC Simulation

Every attack on the real system can be translated to an attack on the ideal system.

UC Composition

MPC (Alice, Bob)

UC Composition

MPC (Alice, Bob)

UC Composition

THEN

Structure of a UC Proof

- Formally, UC states:
 - $\forall Adv \exists Sim \forall Env \cdot Adv \parallel Real \sim_{Env} Sim \parallel Ideal$
- To prove UC simulation:
 - Define real protocol and ideal functionality
 - Construct a Simulator given an arbitrary Adversary
 - Come up with invariant maintained throughout execution
 - Show invariant implies bisimulation from perspective of Environment

Show Compiled Code Simulates Source

Show Compiled Code Simulates Source

IDEAL REAL Alice MPC Local Information flow Cryptographic Repli. Source Distributed Centralized Bob Program MPC Concurrent Sequential Local Repli.

UC Simulation is Transitive

Correctness of Cryptographic Instantiation

Take an existing library and proof of correctness

Take an existing library and proof of correctness

Verify library interface matches our ideal functionality

- Apply repeatedly for each ideal host
- Uses transitivity and UC composition

- Apply repeatedly for each ideal host
- Uses transitivity and UC composition

MPC (Alice, Bob)

ZKP (Bob, Chuck)

- Apply repeatedly for each ideal host
- Uses transitivity and UC composition

- Apply repeatedly for each ideal host
- Uses transitivity and UC composition

Correctness of Endpoint Projection

Appeal to Choreography Literature

- This is exactly what choreography literature tries to prove
 - "Soundness and completeness of endpoint projection"
 - Luís Cruz-Filipe et al. (2022). A Formal Theory of Choreographic Programming. CoRR
- Choreographies are alternative representations of distributed systems
- But they have the same exact behavior (i.e., traces)

Choreographies are Concurrent

Alice

val x = input

Bob

output(2)

Choreography

val x@Alice = input
Bob.output(2)

Choreographies are Concurrent

val x = input Bob

Adversary can step Bob before Alice

Choreography

val x@Alice = input
Bob.output(2)

Choreographies are Concurrent

Choreographies Model Communication

Alice

val x = input
send x to Bob

Bob

val y = receive Alice

Choreography

Choreographies Model Communication

Alice

val x = input
send x to Bob

Bob

val y = receive Alice

Choreography

val x@Alice = input
Alice.x ** Bob.y

Generates message readable by Adversary

Choreographies Model Communication

Generates message readable by Adversary

Choreographies and Projection are Bisimilar

Choreographies and Projection are Bisimilar

Correctness of Protocol Synthesis

Comparing Choreography to Source

Choreography

val x@Alice = e
Bob.output(2)
Alice.x ** Bob.y

Source Program

val x = e
Bob.output(2)

Comparing Choreography to Source

Choreography

Source Program

```
val x = e
Bob.output(2)
```

- Similar:
 - Abstract away cryptography
 - Centralized

Comparing Choreography to Source

Choreography

Source Program

- Similar:
 - Abstract away cryptography
 - Centralized

- Different:
 - 1. Locations & explicit communication
 - 2. Concurrency

Break Up Proof Using Transitivity

Choreography

Ideal Choreography

Sequential Choreography

Source Program

Concurrent

Concurrent

Sequential

Sequential

Visible Communication

Invisible Communication

Invisible Communication

No Communication

Define intermediate languages with altered semantics.

Correctness of Idealization

Choreography

Concurrent

Ideal Choreography

Concurrent

Visible Communication

Invisible Communication

Sequential Choreography

Source Program

Sequential

Invisible Communication

Sequential

No Communication

Choreography

Source Program

val x = Alice.input

Choreography

Source Program

val x = Alice.input

- Generates event in trace
- If Bob is corrupted:
 - x is leaked to Adversary

Choreography

No visible events

- Generates event in trace
- If Bob is corrupted:
 - x is leaked to Adversary

Choreography

Source Program

No visible events

- Generates event in trace
- If Bob is corrupted:
 - x is leaked to Adversary

Explicit Communication: Integrity

Choreography

```
val x@Alice = 1
Alice.x ** Bob.x'
Bob.output(x')
```


Source Program

```
val x = 1
Bob.output(x)
```

Explicit Communication: Integrity

Choreography

Source Program

```
val x = 1
Bob.output(x)
```

ALICE CORRUPTED

Explicit Communication: Integrity

Choreography

val x@Alice = 42
Alice.x → Bob.x'
Bob.output(x')

Source Program

val x = 1
Bob.output(x)

ALICE CORRUPTED

- If Alice is corrupted:
 - Adversary controls x'

Explicit Communication: Integrity

Choreography

Source Program

Always outputs 1

ALICE CORRUPTED

- If Alice is corrupted:
 - Adversary controls x'

Information Flow Typing to the Rescue

- Define information flow type system for choreographies
- Require protocol synthesis to output well-typed choreographies

Confidentiality Violation

```
val x@Alice = input
Alice:X Bob;y
```

Alice doesn't trust Bob with confidentiality

Integrity Violation

```
val x@Alice = 1
Alice.x --> Bob.x'
Bob.output(x')
```

Bob doesn't trust Alice with integrity

Downgrades Relax Security Policy

• Use declassify/endorse to specify intended policy:

Allow Send to Bob

```
val x@Alice = input
val x' = decl(x, Bob)
Alice.x' → Bob.y
```

Allow Receive from Alice

```
val x@Alice = 1
Alice.x → Bob.x'
val x'' = end(x, Bob)
Bob.output(x'')
```

Downgrades as Adversarial Interaction

Downgrades as Adversarial Interaction

- We model downgrades as communication with the Adversary
 - declassify(x, Host): send x to Adversary (if Host is public)
 - endorse(x, Host): receive x from Adversary (if x is untrusted)

Downgrades as Adversarial Interaction

- We model downgrades as communication with the Adversary
 - declassify(x, Host): send x to Adversary (if Host is public)
 - endorse(x, Host): receive x from Adversary (if x is untrusted)
- Commonplace in UC:

Secure Channel (Alice, Bob)

```
val m = recv Alice
send len(m) to Adv
send m to Bob
```


Secure Channel (Alice, Bob)

```
val m = recv Alice
declassify(len(m))
send m to Bob
```

Verifying the Type System

- Type system ensures
 - Secret data is not sent to public hosts
 - Untrusted data does not influence trusted hosts
- How do we know?

Ideal Choreographies

Choreography

Same Code

Ideal Choreography

Same Code

Communication generates external events

Untrusted hosts produce arbitrary data

declassify/endorse internal

Communication generates internal events

Untrusted data replaced with dummy value (i.e., 0)

declassify/endorse external

Ideal Choreographies

Choreography

Same Code

Ideal Choreography

Same Code

Communication generates external events

Communication generates internal events

All corruption localized to declassify/endorse.

declassify/endorse internal

declassify/endorse external

Ideal Choreography

 endorse to corrupt data no longer corruptible

Correctness of Sequentialization

Choreography

Concurrent

Visible

Communication

Ideal Choreography

Concurrent

Sequential Choreography

Invisible Communication

Sequential

Invisible Communication

Source Program

Sequential

No Communication

Unrestricted Concurrency Violates Security

Source Program

```
val g' = endorse(guess, C)
val s' = decl(secret, C)
```

I picked a secret number. You guess, *then* I reveal.

Unrestricted Concurrency Violates Security

Insecure Choreography

```
val g'@S1 = endorse(guess, C)
val s'@S2 = decl(secret, C)
```


Source Program

```
val g' = endorse(guess, C)
val s' = decl(secret, C)
```

I picked a secret number. You guess, *then* I reveal.

This choreography can reorder these events!

Require Synchronization

- A novel type system for choreographies that checks synchronization
- Require protocol synthesis to output well-synchronized choreographies
- Requires minimal synchronization
 - Outputs (declassify) must be ordered wrt. prior inputs (endorse)
 - We do not order internal events, inputs wrt. inputs etc.

Require Synchronization

- A novel type system for choreographies that checks synchronization
- Require protocol synthesis to output well-synchronized choreographies
- Requires minimal synchronization
 - Outputs (declassify) must be ordered wrt. prior inputs (endorse)
 - We do not order internal events, inputs wrt. inputs etc.

Insecure Choreography

```
val g'@S1 = endorse(guess, C)
val s'@S2 = decl(secret, C)
```

Secure Choreography

Sequential Choreography


```
val x = S2.input()
val g' = endorse(guess, C)
S1.0 → S2._
val s' = decl(secret, C)
```

May evaluate: g', x, s'

Must evaluate: x, g', s'

Concurrent Choreography

```
val x = S2.input()
val g'@S1 = endorse(guess, C)
S1.0 → S2._
val s'@S2 = decl(secret, C)
```


Sequential Choreography

```
val x = S2.input()
val g' = endorse(guess, C)
S1.0 → S2._
val s' = decl(secret, C)
```

May evaluate: g', x, s'

Must evaluate: x, g', s'

• Well-synchronized choreography simulates fully sequential choreography

- Well-synchronized choreography simulates fully sequential choreography
- Two choreographies can fall out of sync, but remain joinable:
 - They only differ by internal actions
 - They can perform the same output at the same time

- Well-synchronized choreography simulates fully sequential choreography
- Two choreographies can fall out of sync, but remain joinable:
 - They only differ by internal actions
 - They can perform the same output at the same time
- Proved via confluence and a diamond lemma

Dropping Host Annotations (Bookkeeping)

Choreography

Ideal Choreography

Sequential Choreography

Source Program

Concurrent

Concurrent

Sequential

Sequential

Visible Communication

Invisible Communication

Invisible Communication

No Communication

Host Annotations Don't Do Anything

Ideal, Sequential Choreography

```
val x@Alice = e
Alice.x → Bob.y
Bob.output(y)
```


Source Program

val x = e
Bob.output(x)

Host Annotations Don't Do Anything

Ideal, Sequential Choreography

```
val x@Alice = e
Alice.x → Bob.y
Bob.output(y)
```


Source Program

val x = e
Bob.output(x)

Internal step

Host Annotations Don't Do Anything

Ideal, Sequential Choreography

```
val x@Alice = e
Alice.x → Bob.y
Bob.output(y)
```


Source Program

```
val x = e
Bob.output(x)
```

Internal step

Only differ in number of internal steps.

Proof Summary

Conclusion

- Model cryptographic primitives as ideal hosts
- Data labels capture security requirements
- Host labels capture security guarantees
- Choreographies simplify distributed reasoning
- UC allows separate proofs for protocol synthesis and cryptographic instantiation
- UC simulation implies a strong compiler correctness condition (RHP)

viaduct-lang.org