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Developing secure distributed systems is difficult, and even harder when advanced cryp-

tography must be used to achieve security goals. We present Viaduct, a compiler that

transforms high-level programs into secure, efficient distributed realizations. Instead of

implementing a system of communicating processes, the Viaduct programmer imple-

ments a centralized, sequential program which is automatically compiled into a secure

distributed version that uses cryptography. Viaduct programs specify security poli-

cies declaratively using information-flow labels, and need not mention cryptographic

primitives.

Unlike prior compilers for cryptographic libraries, Viaduct is general and extensible:

it can efficiently and automatically combine local computation with multiple advanced

cryptographic primitives such as commitments, zero-knowledge proofs, secure multi-

party computation, and fully homomorphic encryption.

We develop a modular security proof for Viaduct that abstracts away from the details

of cryptographic mechanisms. Our proof relies on a novel unification of simulation-

based security, information-flow control, choreographic programming, and sequential-

ization techniques for concurrent programs. To our knowledge, this is the first security

proof that simultaneously addresses subtleties essential for robust applications, such as

multiple cryptographic mechanisms, malicious corruption, and asynchronous commu-

nication. Our approach offers a clear path toward leveraging Universal Composability

to obtain end-to-end security with fully instantiated cryptographic mechanisms.
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CHAPTER 1

INTRODUCTION

Developing modern distributed applications is difficult and error-prone, as such appli-

cations consist of multiple independent components that communicate and coordinate

to appear as a single coherent entity to the end user. Developers of distributed systems

must program each component separately, and design communication protocols to keep

global state up to date. To make matters worse, a functioning system is not necessarily

(or usually) a secure system: distributed systems cross administrative boundaries and

involve parties that do not fully trust each other. A correct application must guarantee

confidentiality and integrity for all parties.

Developers may turn to programming languages and related tools to help deal with

the complexity of building distributed systems; unfortunately, languages and tools

leave a lot to be desired. Most programming languages, type systems, compilers, and

debuggers are designed for code that runs on a single machine. This means program-

mers get very little to no help for the most challenging part of designing distributed

systems: coordinating multiple components. Even a simple client–server application

requires developers to maintain two separate code bases, manage network connections,

serialize/deserialize data, match sends and receives, and more. Modern applications go

well beyond the simple client–server model: nowadays, there are multiple heteroge-

nous servers, independent cloud providers, peer-to-peer applications, and so on. The

complexity of these systems only highlights the weaknesses in programming tools.

The situation is even worse as distributed applications must guarantee not only

functional correctness, but also security and reliability. Producing the correct output

when all components behave as prescribed is not enough. The system must maintain

the confidentiality and integrity of data even when some parties deviate from the
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protocol (due to bugs or with malicious intent) or try to glean extra information. For

example, in a server-based video game, players have incentive to cheat, so the client is

untrusted. To maintain integrity, the server must handle safety-critical computations

such as checking that the player has enough energy or in-game currency to perform an

action. In a different setting, a privacy-sensitive client may not trust the server to not

use or sell their data without their consent [45]. To preserve the confidentiality of client

data, as much computation as possible should be performed on the client’s machine.

Finally, there are settings with mutual distrust between all parties. A client wishing to

compare their passwords against a list of compromised passwords should not send all

their passwords to the server, which might get hacked. Similarly, the server should not

reveal the list to the client, who might be a hacker in disguise attempting to learn weak

passwords. In this setting, there is no party trusted to perform the computation.

When there is no party trusted to read all input or write all output, the only way to

defend security is by employing sophisticated mechanisms such as complex distributed

protocols [61, 21], trusted hardware [71, 49, 28], or advanced cryptography. For the

compromised passwords example, the client and server can engage in a secure multi-

party computation (MPC) protocol [96] that reveals to client if any of their passwords

are compromised without revealing any other information to either party. These tech-

nologies add significant complexity to software development and require expertise to

use successfully [40, 46, 37]. The application developer not only has to implement a

distributed system, but correctly and securely employ cryptography, an activity so full

of pitfalls that it garnered the maxim “don’t roll your own crypto.”

This dissertation presents an approach that simplifies the development of distributed

systems that use cryptography. Our approach integrates two previously separate

lines of work: program partitioning and cryptographic compilation. Compilers that

2



perform program partitioning automatically derive a distributed system, but do not

support advanced cryptographic mechanisms. Cryptographic compilers are designed to

make advanced cryptographic mechanisms easier to use, but are limited to individual

primitives. By uniting these lines of work, we get a partitioning compiler that supports

secure combinations of multiple cryptographic mechanisms.

The goal of program partitioning is to let programmers write a single program that

describes the global behavior of the entire system, and have a compiler automatically

derive a correct-by-construction distributed implementation. This is accomplished by

“projecting” the global program for each host, that is, given the global program and a

host, the compiler determines which parts of the program that host needs to execute,

and inserts the necessary communication. In choreographic programming [73, 72, 32,

33, 53], the programmer explicitly places each statement on a host, and is therefore

responsible for ensuring this placement does not compromise confidentiality and/or

integrity. Jif/split [100, 101] and Swift [25] let programmers specify high-level security

policies using information-flow annotations [90], and automatically compute a secure

host assignment. Neither Jif/split nor existing work on choreographic programming

can incorporate advanced cryptographic mechanisms.

Advanced cryptographic mechanisms such as secure multiparty computation (MPC),

zero-knowledge proofs (ZKP), and fully homomorphic encryption (FHE) all expect com-

putation to be represented as circuits. Since programming circuits directly is tedious

and error prone, prior work leverages compilers that translate high-level programs

into low-level circuits. Unfortunately, most compilers only target a single mechanism—

Fairplay [69], ObliVM [66], SCALE-MAMBA [3], Wysteria [85] target MPC; Pinoc-

chio [79], Geppetto [29], Buffet [95], xjSNARK [58] target ZKP; CHET [35], EVA [34],

Porcupine [30] target FHE—and thus do not support secure combinations of mecha-
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nisms. Efficient applications must use cheaper mechanisms such as local computation,

replication, and commitments if possible to avoid the huge overheads associated with

advanced cryptographic mechanisms [13].

We present Viaduct, a system that makes it easier for non-expert programmers to

develop secure distributed programs that employ cryptography. The key idea of Viaduct

is to treat cryptographic mechanisms such as MPC and ZKP as trusted third parties, and

to partition programs onto actual hosts as well as hosts simulated by cryptography. Via-

duct’s security-typed language allows developers to annotate programswith information-

flow labels to specify fine-grained security policies regarding the confidentiality and

integrity of data. An inference algorithm allows these annotations to be lightweight,

and enables Viaduct to reject inherently insecure programs. Viaduct then enforces

these policies by compiling high-level source code to secure distributed programs,

automatically choosing efficient use of cryptography without sacrificing security. The

compiler supports a range of cryptographic protocols whose security guarantees are

characterized using information-flow labels. New protocols can be added to Viaduct by

specifying their security properties and by implementing well-defined interfaces.

The only way to trust cryptography is to prove it correct, and because Viaduct

is a compiler, we need to prove the correctness of not a specific protocol, but any

protocol generated by Viaduct. Additionally, Viaduct is an extensible compiler that

does not bake in a fixed set of cryptographic mechanisms. Our proof must similarly

be modular so adding new mechanisms does not necessitate a new proof. We split our

correctness into two halves. The first half treats cryptographic mechanisms such as

MPC and ZKP uniformly as implementing idealized hosts. We then use information-

flow labels to describe the security guarantees of these hosts, and derive a generic

proof of correctness for program partitioning. In the second half, we connect our result
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to Universal Composability (UC) [17], a framework for showing the correctness of

cryptographic mechanisms. This paves the way for instantiating the idealized hosts

with actual cryptographic mechanisms.

To our knowledge, by providing a unified abstraction to both specify security policies

of programs and to specify security guarantees of cryptographic mechanisms, Viaduct

is the first system to compile secure, distributed programs with an extensible suite of

cryptography, and the first system of its kind with a modular security proof.

1.1 Dissertation Outline

The remainder of this dissertation proceeds as follows. Chapter 2 introduces the Viaduct

system, and discusses information-flow type inference and protocol selection. Chapter 3

develops a correctness proof for a model of the Viaduct compiler. Chapter 4 concludes

with future directions.

Chapter 2 is based on joint work with Rolph Recto, Joshua Gancher, Andrew Myers,

Elaine Shi [2], and Silei Ren. Chapter 3 is based on joint work with Joshua Gancher,

Rolph Recto, and Andrew Myers.
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CHAPTER 2

SECURE PROGRAM PARTITIONINGWITH CRYPTOGRAPHIC PROTOCOLS

Recent efforts from the cryptography community have pushed advanced cryptographic

mechanisms from theory to practical deployment [13], but a gap remains: they still

require too much expertise to use successfully [40, 46, 37]. In this chapter, we introduce

Viaduct, a system that makes it easier for non-expert programmers to develop secure

distributed programs that employ cryptography. Viaduct programs declaratively specify

security policies regarding the confidentiality and integrity of data and computation

using information-flow labels. Viaduct then enforces these policies by compiling high-

level source code to secure distributed programs, automatically choosing efficient use

of cryptography without sacrificing security.

We make the following contributions:

• An algorithm to infer minimum consistent security requirements of data storage

and computation for programs written in a security-typed language. (section 2.3)

• A technique to compile secure distributed programs, deploying an extensible

set of cryptographic protocols while minimizing a customizable notion of cost.

(section 2.5)

• An extensible runtime system for running compiled programs. Cryptographic

mechanisms are added as plug-ins to the runtime. (section 2.6, section 2.7)

• An evaluation that shows that the Viaduct compiler can synthesize a wide variety

of secure and efficient distributed programs, that the compilation technique

is scalable, and that the annotation burden of the source language is minimal.

(section 2.8)

• An open-source implementation of the Viaduct compiler and runtime system.
1

1
Available at https://github.com/apl-cornell/viaduct.
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Figure 2.1: Architecture of Viaduct.

2.1 Overview

Figure 2.1 gives a high-level overview of Viaduct. Its compiler takes a high-level source

program partially annotated with information-flow labels. The compiler infers labels

consistent with programmer-supplied annotations to determine security requirements

for all program components. Then for each component the compiler selects a protocol

that matches these requirements, guiding the selection with a cost model. The output

is a secure and efficient distributed program, which hosts execute using the Viaduct

runtime system. The Viaduct architecture has a small set of well-defined extension

points, allowing developers to add support for new protocols with relative ease.

We give two examples to motivate and describe the Viaduct compilation process.

Historical Millionaires’ Problem Our first example is a slightly modified version of

the “millionaires’ problem” [96]. As in the classic formulation, two individuals, Alice and

Bob, want to determine who has more money without revealing how much money they

have to the other person. Rather than comparing their current wealth, in our “historical”

7



1 host Alice , Bob
2 assume Alice trusts Bob for integrity
3 assume Bob trusts Alice for integrity
4

5 fun historicalMillionaires () {
6 val a1, a2, a3 = Alice.input <int >()
7 val b1, b2, b3 = Bob.input <int >()
8 val a = min(a1, a2, a3)
9 val b = min(b1, b2, b3)
10 val b_richer = declassify(a < b, Alice ∨ Bob)
11 Alice.output(b_richer)
12 Bob.output(b_richer)
13 }

Figure 2.2: Implementation of the historical millionaires’ problem in Viaduct. Viaduct

uses MPC for the comparison a < b, but computes the minima locally.

variant Alice and Bob want to see who was richer at their poorest. Figure 2.2 shows

an implementation of the historical millionaires’ problem in Viaduct. The program

compares Alice’s lowest wealth with Bob’s, and outputs the answer (b_richer) to both

Alice and Bob.

Viaduct programs must specify the hosts that participate in the program along with

any trust assumptions between them. Line 1 declares hosts Alice and Bob, and lines 2

to 3 declare that Alice and Bob trust each other for integrity (but not confidentiality),

meaning Alice and Bob trust each other to execute the program correctly, but they do

not trust each other with their secrets.

All security policies in Viaduct are represented using security labels, which are

defined formally in section 2.2. Security labels capture both confidentiality and integrity.

Each variable and expression in Viaduct carries a security label, which is derived from

the possible flows of information in the program. The variables in lines 6 to 9 carry

the same label as their respective hosts, since they only involve data local to that host.

However, the comparison a < b involves both hosts’ private data, so has the higher
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security label Alice ∧ Bob. This label corresponds to data that is secret to and trusted

by both principals. Since Alice ∧ Bob corresponds to secret data, we require an explicit

declassification to Alice ∨ Bob, which describes data that both hosts can see.

During protocol selection (section 2.5), Viaduct chooses cryptographic protocols to

securely and efficiently execute our example. The central idea that allows Viaduct to

select protocols automatically is that the security guarantees of protocols can also be

captured by labels. Neither Alice nor Bob alone has enough authority to be responsible

for the comparison, so Viaduct generates the following distributed implementation:

Alice and Bob compute their respective minima locally but perform the comparison

a < b in semi-honest MPC. A semi-honest MPC protocol works here because Alice and

Bob trust each other for integrity. Without that assumption, Viaduct is instead forced

to select another protocol such as maliciously secure MPC.

There are typically multiple ways to assign protocols to a given program expression.

For example, the computation of Alice’s minimum on line 8 could be securely performed

in MPC, but since the computation requires the authority of Alice alone, it is cheaper yet

still secure to do the computation locally on Alice’s machine. Using its cost estimator,

Viaduct compiles the optimal program described above.

After protocol selection, Viaduct outputs a distributed program which captures the

required cryptography to execute the source program. Hosts can execute this distributed

program using Viaduct’s runtime system.

Guessing Game Figure 2.3 presents a contrasting example where Alice and Bob do

not trust each for integrity, modeling a malicious corruption scenario. Since they do not

trust each other to execute the program correctly, semi-honest MPC is not applicable.

In the guessing game, Bob inputs a number n and Alice has five attempts to guess

9



1 host Alice , Bob
2

3 fun guessingGame () {
4 val n = endorse(Bob.input <int >(), Alice)
5 var tries = 5
6 var win = false
7 while (0 < tries & !win) {
8 val guess = declassify(Alice.input <int >(), Bob)
9 val tguess = endorse(guess , Bob)
10 win = declassify(n == tguess , Alice)
11 tries -= 1
12 }
13 Alice.output(win)
14 Bob.output(win)
15 }

Figure 2.3: Guessing game. Alice attempts to guess Bob’s secret. Viaduct uses zero-

knowledge proofs so Alice learns nothing more than whether her guesses are correct.

the number. Since Bob’s input is not trusted by Alice in this setting, it must first be

endorsed to raise its integrity and prevent Bob from unilaterally modifying the value.

This endorsement requires a cryptographic mechanism to protect the integrity and

secrecy of variable n throughout program execution.

Viaduct synthesizes a program in which Bob commits to n so that its value remains

secret to Alice but Bob cannot later lie about the committed value. The statement

n == tguess is computed by having Bob send a zero-knowledge proof (ZKP) to Alice,

so that Alice can trust the outcome but learns no additional information. All other

variables are replicated in plaintext across the two hosts.

These examples show that Viaduct is general, as it treats protocols such as MPC

and ZKP uniformly.
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2.1.1 Label Inference

Viaduct selects a protocol for every piece of data and computation in the program based

on their authority requirements, represented as labels. Intuitively, program components

must be executed by protocols with enough authority to defend the confidentiality of

host inputs and the integrity of host outputs. These authority requirements are captured

formally by a type system (section 2.3.1), and Viaduct uses a novel inference algorithm

(section 2.4) to compute for all program components the minimum-authority labels that

still respect the information-flow constraints on the program.

The only required label annotations on Viaduct programs are on declassify/endorse

expressions—all labels on variables can be elided, making annotation burden low. As we

show in our evaluation, these required annotations are enough to capture programmer

intent: minimally annotated programs compile to the same distributed programs as

their fully annotated versions.

2.1.2 Protocol Selection

After label inference, Viaduct performs protocol selection, which assigns a protocol to

compute and store each subexpression and variable. Protocols encompass storage and

computation performed “in the clear” as well as cryptographic mechanisms such as

commitments, zero-knowledge proofs, and secure multiparty computation.

Each protocol 𝑟 carries an associated authority label L(𝑟 ), which approximates the

security guarantees the protocol provides. Given a program component with minimum

authority requirement ℓ , protocol selection only assigns 𝑟 to execute that component if

L(𝑟 ) ⇒ ℓ—that is, if 𝑟 meets the authority requirement for the program component.
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Protocol Confidentiality Integrity

Local(ℎ) ℎ ℎ

Replication(𝐻 ) ∨
ℎ∈𝐻 ℎ

∧
ℎ∈𝐻 ℎ

Commitment(ℎp, ℎv) ℎp ℎp ∧ ℎv
ZKP(ℎp, ℎv) ℎp ℎp ∧ ℎv
MAL-MPC(𝐻 ) ∧

ℎ∈𝐻 ℎ
∧

ℎ∈𝐻 ℎ

SH-MPC(𝐻 ) ∧
ℎ∈𝐻 ℎ

∨
ℎ∈𝐻 ℎ

Figure 2.4: Example protocols and security labels that represent their authority.

Intuitively, given a program 𝑠 and protocol 𝑟 , we may imagine an ideal functionality

𝑟 𝑠 (in the style of UC [17]) which executes the program fragments of 𝑠 that are assigned to

𝑟 . The fragments of 𝑠 that are assigned to 𝑟 may depend on the computational abilities of

𝑟 . For example, if 𝑟 is a commitment protocol, then 𝑟 𝑠 is only able to store values but not

perform any computations. If 𝑟 is an MPC protocol, then 𝑟 𝑠 can execute computations

that can be translated into circuits—the standard interface for MPC implementations.

Functionality 𝑟 𝑠 guarantees that the storage and computation it performs are pro-

tected at label L(𝑟 ). In particular, the adversary cannot observe storage or computation

performed by 𝑟 𝑠 unless its confidentiality is at least L(𝑟 ); dually, the adversary cannot

influence storage or computation performed by 𝑟 𝑠 unless its integrity is at least L(𝑟 ).

Examples of protocols and their corresponding authority labels are given in fig. 2.4.

Following the above intuition for the security of functionalities 𝑟 𝑠 , the authority label of

protocols are determined to be the least authority required of the adversary to corrupt

the protocol (in confidentiality or integrity). We explain the example protocols below:

Local(ℎ) No cryptography is performed: data is stored and computations performed

on host ℎ in the clear. It provides exactly the authority of ℎ.

Replication(𝐻 ) Data and computations are replicated on all hosts in set 𝐻 , and repli-

cated data is checked for equality when necessary. This protocol provides low
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confidentiality since all hosts hold the plaintext value. It provides high integrity

since all hosts must corrupt their local values for the value to be globally corrupted.

Commitment(ℎp, ℎv) Data is stored on ℎp and commitments are placed on ℎv. Com-

mitments are computationally inexpensive but usually no computations can be

performed with them. Commitments increase integrity without sacrificing confi-

dentiality. Its confidentiality is ℎp since only ℎp holds the plaintext value, while

ℎv only holds a commitment. Its integrity is ℎp ∧ ℎv for the same reason as for

replication.

ZKP(ℎp, ℎv) A zero-knowledge proof protocol where ℎp is the prover and ℎv is the

verifier. The prover computes over its private data and sends the result to the

verifier, along with a proof that attests the value computed is correct. The proof

reveals nothing about the private data except what can be gleaned from the result

itself. Zero-knowledge proofs provide the same authority as commitments, for

essentially the same reason: the prover holds all secret information and performs

all computation, while the verifier only holds information which allows it to

believe in the correctness of the result, but nothing more.

MAL-MPC(𝐻 ) A corrupt-majority, maliciously secure multiparty computation pro-

tocol [48, 19, 16] performed by hosts 𝐻 . The protocol allows hosts to jointly

perform a computation over their private inputs, keeping these inputs secret to

the other hosts and revealing only the result. The label

∧
ℎ∈𝐻 ℎ reflects that the

confidentiality (resp., integrity) of data computed in MPC is compromised only if

all participating hosts have compromised confidentiality (resp. integrity).

SH-MPC(𝐻 ) A corrupt-majority, semi-honest secure multiparty computation protocol

performed by hosts 𝐻 . The protocol provides high confidentiality similar to

MAL-MPC(𝐻 ). The low integrity

∨
ℎ∈𝐻 ℎ indicates that the MPC computation
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cleartext

val a1, a2, a3 = input int
val am = min(a1, a2, a3)
send am to (MPC(a,b),a)

val res = recv (MPC(a,b),a)
output res

MPC

val t_am = recv (Local(a),a)
val am = InputGate(t_am)
val bm = DummyInputGate()
val lt = LTGate(am, bm)
val v = ExecuteCircuit(lt)
send v to (Replicated(a,b),a)

Alice (a)
val b1, b2, b3 = input int
val bm = min(b1, b2, b3)
send bm to (MPC(a,b),b)

val res = recv (MPC(a,b),b)
output res

val am = DummyInputGate()
val t_bm = recv (Local(b),b)
val bm = InputGate(t_bm)
val lt = LTGate(am, bm)
val v = ExecuteCircuit(lt)
send v to (Replicated(a,b),b)

Bob (b) cleartext MPC

1

2 2

1

33

Figure 2.5: Execution of the compiled distributed program for the historical millionaires’

problem using a cleartext back end and an MPC back end. Sends and receives are over

protocol–host pairs (𝑟, ℎ). These messages are processed by the back end for protocol 𝑟

at host ℎ.

may be compromised if any host behavesmaliciously. Effectively, the low integrity

means the protocol is only applicable if all hosts 𝐻 trust each other for integrity.

2.1.3 Runtime

Viaduct provides a modular runtime system for executing compiled distributed pro-

grams, implemented as an interpreter. All hosts run the interpreter with the same

compiled program, which then executes each host’s portion of the program. During

execution, the interpreter calls out to back ends implementing the cryptographic mech-

anisms used in the program. Back ends translate computations in the source language

into their cryptographic realizations. For instance, the back ends for MPC and ZKP in

our implementation build a circuit representation of the program as it executes.

Protocol back ends can send data to and receive data from each other, supporting

the composition of protocols. Source-level declassification and endorsement induce this

communication. For example, in fig. 2.2 on line 10, the computation a < b is declassified

from Alice∧Bob to Alice∨Bob. This declassification causes the MPC protocol between

Alice and Bob to execute its stored circuit for this comparison, and to output the result

in cleartext.
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Figure 2.5 shows the execution of the program compiled by Viaduct for the historical

millionaires’ problem. The program runs as follows.

• First, the cleartext back ends on Alice and Bob’s machines receive input locally

and compute their respective minima. The cleartext back ends send the minima

as secret inputs to their respective MPC back ends, which create input gates for

these values.

• Next, the MPC back ends on Alice and Bob’s machines each create an operation

gate that compares Alice and Bob’s secret inputs. The back ends jointly execute the

circuit with the comparison result as output, which they send to their respective

cleartext back ends.

• Finally, the cleartext back ends on Alice and Bob’s machines both receive from

their MPC back ends and output the result.

2.1.4 Threat Model

Compiled programs run in a distributed setting in which each host executes a single

thread concurrently with other hosts. Hosts communicate via message passing over

secure, private, asynchronous channels. There is no shared memory that spans multiple

hosts. We assume the attacker cannot observe wall-clock timing. Additionally, we are

not concerned with availability, so the attacker can halt execution at any time.

In the setting of Viaduct, there is no single notion of an attacker. For example, in

the historical millionaires problem, neither Alice nor Bob fully trust the other. To Alice,

Bob is a potential attacker; Alice expects her security requirements to be met as long as

her assumptions about Bob are correct (that is, Bob follows the protocol but may try to
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leak data). Conversely, to Bob, Alice is a potential attacker. Hence, we are concerned

with security versus all possible attackers.

Corruption happens at the level of hosts. Hosts can be honest, semi-honest, or

malicious. Malicious hosts are fully controlled by the adversary; semi-honest hosts

follow the protocol, but leak all their data to the adversary [64]. Corruption must

be consistent with the trust assumptions between hosts. For example, if Bob trusts

Alice with confidentiality and Alice is semi-honest, then Bob is also semi-honest (if the

adversary can read data on Alice, and Bob is willing to let Alice see his data, then the

adversary can see Bob’s data). Similarly, if Bob trusts Alice with integrity and Alice is

malicious, then so is Bob.

In the historical millionaires’ problem (fig. 2.2), there are five interesting corruption

scenarios: both are honest; Alice is semi-honest; Bob is semi-honest; both are semi-

honest; both are malicious. Malicious corruption of a single host is not possible because

the hosts trust each other for integrity.

2.2 Information-Flow Control

To capture the adversary’s power to read and write, we use a label model that can

describe confidentiality and integrity simultaneously [75, 90, 4].

A security label ℓ ∈ L is a pair of the form ⟨𝑝, 𝑞⟩ where 𝑝 and 𝑞 are elements of

an arbitrary bounded distributive lattice P. Here, 𝑝 describes confidentiality and 𝑞

describes integrity. Elements of P are called principals. Principals can be thought of as

negation-free boolean formulas over the set of hosts H = {Alice, Bob,Chuck, . . .}.
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The acts-for relation (⇒) orders principals by authority, and coincides with logical

implication: for example, 𝑝 ∧ 𝑞 ⇒ 𝑝 and 𝑞 ⇒ 𝑝 ∨ 𝑞. The most powerful principal is 0

and the least powerful, 1, so we have 0⇒ 𝑝 ⇒ 1 for any principal 𝑝 .

We lift ∧, ∨, and⇒ to labels in the obvious pointwise manner. Whenever appropri-

ate, we write 𝑝 for the security label ⟨𝑝, 𝑝⟩. Confidentiality and integrity projections

ℓ→ and ℓ← completely weaken the other component of a label:

⟨𝑝, 𝑞⟩→ = ⟨𝑝, 1⟩ ⟨𝑝, 𝑞⟩← = ⟨1, 𝑞⟩.

Like DLM [75] and FLAM [4], we use the authority ordering on principals to define

information flow. Intuitively, information flow policies become more restrictive as they

become more secret and less trusted:

⟨𝑝1, 𝑞1⟩ ⊑ ⟨𝑝2, 𝑞2⟩ ⇐⇒ 𝑝2 ⇒ 𝑝1 and 𝑞1 ⇒ 𝑞2 (flows to)

⟨𝑝1, 𝑞1⟩ ⊔ ⟨𝑝2, 𝑞2⟩ = ⟨𝑝1 ∧ 𝑝2, 𝑞1 ∨ 𝑞2⟩ (join)

⟨𝑝1, 𝑞1⟩ ⊓ ⟨𝑝2, 𝑞2⟩ = ⟨𝑝1 ∨ 𝑝2, 𝑞1 ∧ 𝑞2⟩ (meet)

The flows-to relation ℓ1 ⊑ ℓ2 orders information flow policies: it means label ℓ1 is more

permissive about the use of information than ℓ2. The join ℓ1 ⊔ ℓ2 is more restrictive

than both ℓ1 and ℓ2, and the meet ℓ1 ⊓ ℓ2 is more permissive than either ℓ1 or ℓ2. The

least restrictive policy is 0← (“public trusted”), describing information that can be used

anywhere, while the most restrictive is 0→ (“secret untrusted”).

2.2.1 Capturing Attacks with Labels

To reason about the security of a system, we need a clear definition of what attackers can

do. Formally, an attack is specified by picking two sets of principals: public principals
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P ∩U

Compromised labels: {⟨𝑝, 𝑞⟩ | 𝑞 ⇏ 𝑝}

Figure 2.6: Information flow lattice. Attacks are valid when S ∩U is entirely compro-

mised.

𝑃 ⊆ P and untrusted principals 𝑄 ⊆ P. Some common-sense conditions must hold on

the sets 𝑃 and 𝑄 [23]. We state the conditions for 𝑃 but they apply equally to 𝑄 .

• The attacker always controls the weakest principal, but never the strongest: 1 ∈ 𝑃

and 0 ∉ 𝑃 .

• If the attacker controls a principal, then it controls all weaker principals: if 𝑝 ∈ 𝑃

and 𝑝 ⇒ 𝑞, then 𝑞 ∈ 𝑃 .

• Attacker-controlled principals may collude: if 𝑝, 𝑞 ∈ 𝑃 , then 𝑝 ∧ 𝑞 ∈ 𝑃 .

• If the attacker controls the the common power of two principals, then it controls

at least one of the principals: if 𝑝 ∨ 𝑞 ∈ 𝑃 , then either 𝑝 ∈ 𝑃 or 𝑞 ∈ 𝑃 .

Together, these conditions imply that 𝑃 and𝑄 are sensible truth assignments to elements

P: sensible in the sense that they play nicely with ∧ and ∨.2

Given the sets of attacker-controlled principals 𝑃 and 𝑄 , we can partitioning labels

L across the two axes: public/secret and trusted/untrusted. We denote these sets as P/S
2
For those familiar with order theory, 𝑃 and 𝑄 must be prime filters of P.
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Delegation 𝑑 ::= 𝑝 ⇒ 𝑞

Principal Delegations 𝜃 ::= 𝑑1, . . . , 𝑑2
Label Delegations Θ ::= ⟨𝜃→, 𝜃←⟩

Figure 2.7: Syntax of delegations.

and T /U, respectively. The partitioning is depicted in fig. 2.6 and defined as follows:

P = {⟨𝑝, 𝑞⟩ ∈ L | 𝑝 ∈ 𝑃} S = L \ P T = {⟨𝑝, 𝑞⟩ ∈ L | 𝑞 ∉ 𝑄} U = L \ T .

For a host ℎ, define L(ℎ) = ⟨ℎ,ℎ⟩. Recalling the threat model, an honest host has

a secret, trusted label (L(ℎ) ∈ S ∩ T ); a semi-honest host has a public, trusted label

(L(ℎ) ∈ P ∩ T ); and a malicious host has a public, untrusted label (L(ℎ) ∉ T ). A

host with a secret, untrusted label does not make any sense: an untrusted host is fully

controlled by the adversary, so it cannot hide information from the adversary. We rule

out such corruptions by restricting attacks to valid attacks.

Definition 2.2.1 (Valid Attack). Attack ⟨𝑃,𝑄⟩ is valid if all untrusted principals are

public: 𝑄 ⊆ 𝑃 .

Similar to hosts, protocols with secret, untrusted labels do not make sense. We rule

out such protocols by requiring protocol labels to be uncompromised [97]. A valid attack

never classifies an uncompromised label as secret and untrusted.

Definition 2.2.2 (Uncompromised Label). ℓ = ⟨𝑝, 𝑞⟩ is uncompromised, written ▼ℓ , if

it is at least as trusted as it is secret: 𝑞 ⇒ 𝑝 .

Theorem 2.2.3. If ⟨𝑃,𝑄⟩ is a valid attack and ▼ℓ , then ℓ ∉ S ∩U.
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𝑃 |= 𝑑 𝑃 |= 𝜃

𝑝 ∈ 𝑃 =⇒ 𝑞 ∈ 𝑃
𝑃 |= 𝑝 ⇒ 𝑞

∀𝑑 ∈ 𝜃 � 𝑃 |= 𝑑

𝑃 |= 𝜃

𝜃 |= 𝑝 ⇒ 𝑞

∀𝑃 � (𝑃 |= 𝜃 =⇒ 𝑃 |= 𝑝 ⇒ 𝑞)
𝜃 |= 𝑝 ⇒ 𝑞

Figure 2.8: Semantics of delegations.

2.2.2 Delegation

We capture trust assumptions between hosts as sets of delegations. Figure 2.7 gives

the syntax of delegations. A delegation is an assumption on the acts-for relation: the

assumption 𝑝 ⇒ 𝑞means principal𝑞 delegates its authority to principal 𝑝 (i.e.,𝑞 trusts 𝑝).

A principal-delegation context𝜃 is a set of delegations. Since labels are pairs of principals,

a label-delegation context Θ is two sets of delegations: 𝜃→ collecting confidentiality

delegations and 𝜃← collecting integrity delegations. For example, the assumptions in

fig. 2.2 (lines 2 to 3) are captured with the context ⟨𝜖, {Bob⇒ Alice,Alice⇒ Bob}⟩.

Since delegations are assumptions, we model them as limitations on the sets of

attacks we consider. For example, with the assumption Alice ⇒ Bob in the system,

we are no longer interested in attackers that control Alice but not Bob. We formally

capture this insight in fig. 2.8. We write 𝑃 |= 𝜃 when an attack 𝑃 is consistent with

every delegation in 𝜃 . We say 𝑝 acts for 𝑞 under the assumptions 𝜃 , written 𝜃 |= 𝑝 ⇒ 𝑞,

when any attacker consistent with 𝜃 that controls 𝑝 necessarily controls 𝑞.3

3
A delegation Alice ⇒ Bob has an effect beyond the principals explicitly involved (i.e., Alice and

Bob). For example, it implies Alice ∧ Chuck⇒ Bob ∧ Chuck.
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When comparing labels, we use two sets of delegations Θ = ⟨𝜃→, 𝜃←⟩: 𝜃→ for the

confidentiality component and 𝜃← for the integrity component. For example,

⟨𝜃→, 𝜃←⟩ |= ⟨𝑝1, 𝑞1⟩ ⊑ ⟨𝑝2, 𝑞2⟩ ⇐⇒ 𝜃→ |= 𝑝2 ⇒ 𝑝1 and 𝜃← |= 𝑞1 ⇒ 𝑞2.

The fact that we have different delegations for confidentiality and integrity leads to

a problem when defining uncompromised labels, where we compare the integrity

component of a label to its confidentiality component. Namely, which context do we

use? We resolve the problem by using an intermediary principal.

Definition 2.2.4 (Uncompromised Label Under Delegations). ℓ = ⟨𝑝, 𝑞⟩ in uncompro-

mised under delegations Θ = ⟨𝜃→, 𝜃←⟩, written Θ |= ▼ℓ , if there exists 𝑝′ ∈ P such that

𝜃← |= 𝑞 ⇒ 𝑝′ and 𝜃→ |= 𝑝′⇒ 𝑝 .

Delegations in Viaduct are defined globally and fixed for the entire program. There-

fore, we fix a delegation contextΘ for the rest of our development, and suppress contexts

in judgments.

2.3 Source Language

The syntax for Viaduct’s source language, a simplified version of the surface language, is

given in fig. 2.9. The language supports an abstract set of values and operators over them.

We distinguish between fully evaluated atomic expressions 𝑡 , and expressions 𝑒 that

evaluate to values and may have side effects. The declassify expression marks locations

where private data is explicitly allowed to flow to public data, while the endorse

expression marks locations where untrusted data is explicitly allowed to influence

trusted data. The input/output expressions allow programs to interact with hosts.
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Principals 𝑝 ∈ P
Labels ℓ ∈ L = P × P
Variables 𝑥 ∈ X Hosts ℎ ∈ H Protocols 𝑟 ∈ R
Values 𝑣 ∈ V ∋ 0
Operators 𝑓 ∈ F

Atomic Expressions 𝑡 ::= 𝑣 | 𝑥
Expressions 𝑒 ::= 𝑓 (𝑡1, . . . , 𝑡𝑛)

| declassify(𝑡, 𝑝) | endorse(𝑡, 𝑝)
| input ℎ | output 𝑡 to ℎ

Statements 𝑠 ::= let 𝑥 = 𝑒; 𝑠

| if 𝑡 then 𝑠1 else 𝑠2
| 𝜇𝑋 .𝑠 | 𝑋
| 𝑠1; 𝑠2 | skip

Figure 2.9: Abstract syntax of Viaduct’s source language

Since declassification does not affect integrity, only the change to confidentiality

must be specified. Symmetrically, endorsement changes integrity but not confidentiality.

Therefore, declassify/endorse expressions specify a single label component (a principal)

𝑝 instead of a full label ℓ .

Statements consist of let-bindings, conditionals, recursive statements, and sequen-

tial composition. Surface-level val statements are represented as let statements. For

simplicity, we do not model mutable variables (var declarations); they are easy to add

to the language. We require all intermediate computations to be let-bound, enforcing a

variant of A-normal form [41]. We use the more general recursive statements instead

of the more traditional for/while loops, simplifying the conversion to A-normal form.

Loops are recovered easily, for example:

while 𝑡 do 𝑠 ≜ 𝜇𝑋 .if 𝑡 then (𝑠;𝑋 ) else skip.

22



Γ ⊢ 𝑡 : ℓ Γ; pc ⊢ 𝑒 : ℓ

Γ ⊢ 𝑣 : ℓ

Γ(𝑥) ⊑ ℓ

Γ ⊢ 𝑥 : ℓ

∀𝑖 � Γ ⊢ 𝑡𝑖 : ℓ
Γ; pc ⊢ 𝑓 (𝑡1, . . . , 𝑡𝑛) : ℓ

pc ⊑ ℓ Γ ⊢ 𝑡 : ℓf
▼ℓf ℓf ⊓ ⟨𝑝, 1⟩ ⊑ ℓ

Γ; pc ⊢ declassify(𝑡, 𝑝) : ℓ

pc ⊑ ℓ Γ ⊢ 𝑡 : ℓf
▼ℓf ℓf ⊓ ⟨0, 𝑝⟩ ⊑ ℓ

Γ; pc ⊢ endorse(𝑡, 𝑝) : ℓ
pc ⊑ L(ℎ) L(ℎ) ⊑ ℓ

Γ; pc ⊢ input ℎ : ℓ

pc ⊑ L(ℎ) Γ ⊢ 𝑡 : L(ℎ)
Γ; pc ⊢ output 𝑡 to ℎ : ℓ

Γ; pc ⊢ 𝑠

Γ; pc ⊢ 𝑒 : ℓ pc ⊑ ℓ

(Γ, 𝑥 : ℓ); pc ⊢ 𝑠
Γ; pc ⊢ let 𝑥 = 𝑒; 𝑠

pc ⊑ pc
′ Γ ⊢ 𝑡 : pc′

Γ; pc′ ⊢ 𝑠1 Γ; pc′ ⊢ 𝑠2
Γ; pc ⊢ if 𝑡 then 𝑠1 else 𝑠2

pc ⊑ pc
′

(Γ, 𝑋 : pc
′); pc′ ⊢ 𝑠

Γ; pc ⊢ 𝜇𝑋 .𝑠

pc ⊑ Γ(𝑋 )
Γ; pc ⊢ 𝑋

Γ; pc ⊢ 𝑠1 Γ; pc ⊢ 𝑠2
Γ; pc ⊢ 𝑠1; 𝑠2 Γ; pc ⊢ skip

Figure 2.10: Information flow checking rules for expressions and statements.

2.3.1 Label Checking

Viaduct’s type system enforces secure information flow in a standard way. The type

system serves two purposes. First, it helps programmers ensure there are no unintended

information flows: secrets are not leaked to and data is not corrupted by unauthorized

principals. Second, it specifies what labels can be assigned to variables and expressions

that the user did not explicitly annotate.

Figure 2.10 presents label checking rules for expressions and statements. Expressions

are checked by the judgment Γ; pc ⊢ 𝑒 : ℓ , which means that 𝑒 has label ℓ under the

context on the left. Here, Γ is a finite partial map from variables to labels:

Label Contexts Γ ::= 𝜖 | Γ, 𝑥 : ℓ | Γ, 𝑋 : ℓ
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The program counter label pc is a standard way to prevent implicit flows of information

via control flow [88]. The rules for input/output expressions differ from those in

standard security-typed languages in that they also include premises with pc checks.

These checks are required because hosts must be able to follow control flow to respond

to input/output requests. Prior work that targets the distributed setting contains similar

checks to control read channels [100].

The rules for declassify/endorse expressions enforce NMIFC [23]. They require

that the data being downgraded has an uncompromised label [97]. They combine the

label of the input expression with the specified change 𝑝 to compute the output label:

the declassify expression weakens confidentiality by 𝑝 (the output is more public), and

the endorse expression strengthens integrity by 𝑝 (the output is more trusted).

Statement checking rules have the form Γ; pc ⊢ 𝑠; they are largely standard [88].

Because we assume attackers cannot observe timing nor analyze traffic, the rule for

conditional statements does not require branches to have the same timing behavior or

effects (e.g., input/output).

Nonmalleable Information Flow Control

Information flow type systems typically aim to enforce a compositional security prop-

erty such as noninterference [47]. Noninterference is a strong property but it is too

restrictive for practical applications, which usually have a more nuanced policy for

secure information flow. Hence, like most languages supporting information flow

control (e.g., [74, 84, 14]), Viaduct allows programmers to signify the exceptions to a

noninterference policy through downgrading expressions.
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host Client , Server
assume Client trusts Server

val info: int{Server}, pw: int{Server}, guess: int{Client}
if (declassify (pw == guess) to {Client })

Client.output(declassify info to {Client })

Figure 2.11: A program that violates robust declassification.

Downgrading enables information flows that would violate noninterference, so

it can be dangerous. This is especially true in the distributed setting, where storage

and computation can be performed by hosts that one does not fully trust. Downgrad-

ing confidentiality (declassification) allows secret information to be treated as public

information—a necessity for many applications, but doing so might allow a corrupted

host to control when information is released or what information is released. Down-

grading integrity (endorsement) allows untrusted information to be treated as trusted

information, but might enable a corrupted host to trick an honest one into accepting

mauled secrets.

The property of nonmalleable information flow control (NMIFC) [23] prevents both of

these abuses of downgrading by combining two properties: robust declassification [99]

and transparent endorsement [23]. Robust declassification requires that principals to

which data is declassified could not have influenced either the decision to declassify or

the data itself. Meanwhile, transparent endorsement prevents trusting mauled secrets

by ensuring that information can only be endorsed if the providing principal can read

it.

The declassification and endorsement rules in fig. 2.10 enforce NMIFC by preventing

the program from downgrading information with compromised labels [97]. These rules

generate authority requirements that prevent the Viaduct compiler from placing data

and computation on insufficiently trustworthy hosts.
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Consider the program in fig. 2.11, where a server releases secret information to

a client when the client guesses the correct password. This program violates robust

declassification, because the decision to declassify info depends on (low-integrity)

guess. Without the restrictions on downgrading, Viaduct could compile the program

to store the guard pw == guess (with label Client) on Client. Client could simply claim

to the server that its guess is correct! For this program to type-check with NMIFC,

endorsement is needed to make the guard high-integrity. A naive programmer might

think to endorse the entire guard, but this (nontransparent) endorsement could still be

compiled in a way that lets an untrusted host supply its value. The correct solution

is to explicitly endorse guess before declassifying the comparison; since guess is not

secret, the endorsement is transparent. The resulting labels correctly force Viaduct to

put the comparison on the server.

2.4 Label Inference

Checking secure information flow is not enough; for protocol selection, the compiler

also needs the labels of all expressions. We present an algorithm to infer these labels.

As in prior work on inferring information flow labels [74, 84], information flow

checking reduces to a system of flows-to (⊑) constraints over label constants and label

variables. Type inference collects these premises from fig. 2.10, and generates fresh label

variables for labels that appear in a premise of a rule but not its conclusion (e.g., ℓf in

the rule for declassify expressions and pc
′
in the rule for if statements). The inference

algorithm finds a label-variable assignment that satisfies all the constraints, if possible.

The algorithm computes the minimum-authority solution, the choice of labels re-

quiring the least amount of confidentiality and integrity for each component. Minimum-
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Label Constants ℓ

Label Variables 𝑌

Authority Projections 𝜋 ∈ {→,←}
Label Expressions 𝐿 ::= ℓ | 𝑌 | 𝐿𝜋 | 𝐿1 ⊔ 𝐿2 | 𝐿1 ⊓ 𝐿2 | 𝐿1 ∨ 𝐿2 | 𝐿1 ∧ 𝐿2
Label Constraints 𝐶 ::= 𝐿1 ⊑ 𝐿2 | ▼𝐿

Figure 2.12: Syntax of label constraints.

authority labels are desirable because higher authority is achieved only through more

trust or costly cryptography.

2.4.1 Label Constraints

Figure 2.12 gives the syntax of the label constraint language. Expressions in the con-

straint language include label constants and label variables, as well as standard lattice

operations like join and meet. Additionally, we have authority projections 𝐿𝜋 that allow

isolating the confidentiality (→) or the integrity (←) component of an expression 𝐿.

Constraints have two forms: we can assert that an expression flows to another, or

we can assert that an expression is uncompromised. The premises in fig. 2.10 can be

readily translated to constraints in the label constraint language.

Recall that a label ℓ is a pair of principals ⟨𝑝, 𝑞⟩, meaning label expressions and

label constraints are essentially syntactic sugar for manipulating pairs. Instead of

solving label constraints directly, we translate constraints over labels to constraints

over principals.
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Principal Constants 𝑝

Principal Variables 𝑌 𝜋

Principal Expressions 𝑃𝜋
::= 𝑝 | 𝑌 𝜋 | 𝑃𝜋

1
∨ 𝑃𝜋

2
| 𝑃𝜋

1
∧ 𝑃𝜋

2

| 𝑝1→ 𝑃𝜋
2
| min𝜋 ′ (𝑃𝜋 ′)

Principal Constraints 𝐷 ::= 𝑃𝜋
1
⇒𝜋 𝑃𝜋

2

Figure 2.13: Syntax of principal constraints.

2.4.2 Principal Constraints

Figure 2.13 gives the syntax of the principal constraint language. Since labels are tuples

of principal components, the syntax includes a principal variable 𝑌 𝜋
for each combi-

nation of label variable 𝑌 and projection 𝜋 . That is, 𝑌→ represents the confidentiality

component of 𝑌 , and 𝑌← represents the integrity component of 𝑌 .

We index expressions 𝑃𝜋
by the component 𝜋 they represent. This prevents mixing

confidentiality and integrity components in the same expression, for example, by

writing 𝑌→
1
∧ 𝑌←

2
. Expressions include principal constants and principal variables, as

well as principal-lattice operations ∨ and ∧. The operation → is called the relative

pseudocomplement of ∧: 𝑝1→𝑝2 is defined as the weakest principal 𝑝 such that 𝑝1∧𝑝 ⇒

𝑝2. We use→ to solve constraints of the form 𝑌 𝜋 ∧ 𝑝1 ⇒𝜋 𝑃𝜋
2
.
4
The operation min𝜋 (𝑝)

is the strongest principal 𝑝′ equivalent to 𝑝 according to the delegations 𝜃𝜋 for the 𝜋

component. This operation allows mixing integrity and confidentiality components;

we use it when solving for labels that must be uncompromised.

Constraints have the form 𝑃𝜋
1
⇒𝜋 𝑃𝜋

2
, which asserts that expression 𝑃𝜋

1
acts for

𝑃𝜋
2
under delegations 𝜃𝜋 . Note that we must specify 𝜋 since we might have different

delegations for confidentiality and integrity.

4
A lattice that supports the→ operation is called a Heyting algebra [87]. Any free distributive lattice,

such as our lattice of principals, is a Heyting algebra.
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⟦𝐿⟧𝜋 = 𝑃𝜋

⟦⟨𝑝, 𝑞⟩⟧𝜋 =

{
𝑝 if 𝜋 =→
𝑞 if 𝜋 =←

⟦𝑌⟧𝜋 = 𝑌 𝜋

⟦𝐿𝜋 ′⟧𝜋 =

{
⟦𝐿⟧𝜋 if 𝜋 = 𝜋 ′

1 if 𝜋 ≠ 𝜋 ′

⟦𝐿1 ⊔ 𝐿2⟧𝜋 = ⟦(𝐿1 ∧ 𝐿2)→ ∧ (𝐿1 ∨ 𝐿2)←⟧𝜋
⟦𝐿1 ⊓ 𝐿2⟧𝜋 = ⟦(𝐿1 ∨ 𝐿2)→ ∧ (𝐿1 ∧ 𝐿2)←⟧𝜋
⟦𝐿1 ∨ 𝐿2⟧𝜋 = ⟦𝐿1⟧𝜋 ∨ ⟦𝐿2⟧𝜋
⟦𝐿1 ∧ 𝐿2⟧𝜋 = ⟦𝐿1⟧𝜋 ∧ ⟦𝐿2⟧𝜋

⟦𝐶⟧ = 𝐷1, . . . , 𝐷𝑛

⟦𝐿1 ⊑ 𝐿2⟧ = ⟦𝐿2⟧→ ⇒→ ⟦𝐿1⟧→, ⟦𝐿1⟧← ⇒← ⟦𝐿2⟧←
⟦▼𝐿⟧ = ⟦𝐿⟧← ⇒← min→(⟦𝐿⟧→)

Figure 2.14: Translating label constraints to principal constraints.

Figure 2.14 gives rules for translating label constraints to principal constraints.

First, we define a function ⟦𝐿⟧𝜋 , which returns a principal expression representing the

confidentiality or the integrity component (depending on 𝜋 ) of the label expression

𝐿. The definition of ⟦𝐿⟧𝜋 is a straightforward reading of the rules in section 2.2.

Using ⟦𝐿⟧, we translate a flows-to (⊑) constraint to multiple acts-for (⇒) constraints,

one for each label component, following section 2.2. The constraint ▼𝐿 requires the

integrity of 𝐿 to act for its confidentiality, but this raises a question: should we use

confidentiality or integrity delegations when deciding what acts-for means? Since

we have different delegations for confidentiality and integrity, the confidentiality and

integrity components of 𝐿 intuitively “live in different universes,” and therefore cannot

be directly compared. We solve this problem by using the operation min𝜋 (·): we
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𝑃𝜋
1
⇒𝜋 𝑃𝜋 𝑃𝜋

2
⇒𝜋 𝑃𝜋

𝑃𝜋
1
∨ 𝑃𝜋

2
⇒𝜋 𝑃𝜋

(𝑃𝜋
1
∧ 𝑃𝜋

3
) ∨ (𝑃𝜋

2
∧ 𝑃𝜋

3
) ⇒𝜋 𝑃𝜋

(𝑃𝜋
1
∨ 𝑃𝜋

2
) ∧ 𝑃𝜋

3
⇒𝜋 𝑃𝜋

𝑃𝜋
1
⇒𝜋 (𝑝2→ 𝑃𝜋 )

𝑃𝜋
1
∧ 𝑝2 ⇒𝜋 𝑃𝜋

Figure 2.15: Rules for simplifying principal constraints.

compute acts-for in the integrity domain (⇒←), and compute a strongest representative

for the confidentiality component of 𝐿 in the confidentiality domain (min→(𝐿)).

2.4.3 Solving Principal Constraints

We are now ready to discuss how we solve constraints over principals. Our constraint

solver requires the left-hand side of each constraint to be atomic (a constant or a variable),

that is, we only work with constraints of the form 𝑝1 ⇒𝜋 𝑃𝜋
2
and 𝑌 𝜋

1
⇒𝜋 𝑃𝜋

2
. We apply

the rules in fig. 2.15, as well as the associativity, commutativity, and idempotence of

∨ and ∧, until no left-hand side of any constraint can be simplified any further. This

process always terminates, and ensures that the left-hand side of each constraint either

is atomic or contains a meet (∧).5

Constraint solving fails if the left-hand side of any constraint contains a meet,

since such constraint systems do not have unique solutions. For example, the system

𝑌1 ∧ 𝑌2 ⇒ Alice has no minimal solution: we can assign {𝑌1 ↦→ Alice, 𝑌2 ↦→ 1}

or {𝑌1 ↦→ 1, 𝑌2 ↦→ Alice}, but neither solution is better than the other. The typing

rules we give in fig. 2.10 never lead to constraint systems with meets on the left (after

simplification). However, our implementation of the Viaduct compiler supports label

polymorphic functions that allow arbitrary constraints as side conditions, which might

lead to unsolvable system. The Viaduct compiler fails with an informative error message

5
Translation rules in fig. 2.14 never generate constraints with→ or min𝜋 (·) on the left-hand side,

and the rules in fig. 2.15 eliminate all joins (∨) on the left.
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that points at the constraint that generates a meet on the left-hand side when this

happens.

Assume the simplification process succeeds and produces a constraint system with

only atomic expressions on the left-hand side of constraints. We adapt the algorithm of

Rehof and Mogensen [86] for iteratively solving semilattice constraints. Fix a delegation

context Θ = ⟨𝜃→, 𝜃←⟩. We initialize all principal variables to 1, and use unsatisfied

constraints to update variables repeatedly until a fixed point is reached, using the

following rule:

given 𝑌 𝜋 ⇒𝜋 𝑃𝜋 , set 𝑌 𝜋 ≔ 𝑌 𝜋 ∧ current-value(Θ, 𝑃𝜋 ),

where current-value(Θ, 𝑃𝜋 ) is the value of 𝑃𝜋
according to the current assignment.

Note that the update rule only uses Θ when computing min𝜋 (·); in particular, lattice

operations ∨, ∧, and→ are computed using the underlying lattice, completely ignoring

delegations. Additionally, constraints that have principal constants 𝑝 on the left-hand

side are ignored during the fixed point computation. Once we reach a fixed point

solution, we perform the following check for each constraint with a constant left-hand

side:

given 𝑝 ⇒𝜋 𝑃𝜋 , check 𝜃𝜋 |= 𝑝 ⇒ current-value(Θ, 𝑃𝜋 ).

We have a minimal-authority solution if all such constraints are satisfied; otherwise,

there is no valid solution to the constraint system.

2.5 Protocol Selection

The protocol selection phase of Viaduct assigns a protocol to each program component.

Formally, a protocol assignment associates a protocol to each variable declaration (let
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Π |= 𝑡 : 𝑟 Π |= 𝑒 : 𝑟

Π |= 𝑣 : 𝑟

L(𝑥)→ ⊑ L(𝑟 )→ comm(Π(𝑥), 𝑟 )
Π |= 𝑥 : 𝑟

∀𝑖 � Π |= 𝑡𝑖 : 𝑟

Π |= 𝑓 (𝑡1, . . . , 𝑡𝑛) : 𝑟

Π |= 𝑡 : 𝑟

Π |= declassify(𝑡, 𝑝) : 𝑟
Π |= 𝑡 : 𝑟

Π |= endorse(𝑡, 𝑝) : 𝑟 Π |= input ℎ : Local(ℎ)

Π |= 𝑡 : Local(ℎ)
Π |= output 𝑡 to ℎ : Local(ℎ)

Π |= 𝑠

L(𝑟 ) ⇒ L(𝑥)
Π |= 𝑒 : 𝑟 Π, 𝑥 : 𝑟 |= 𝑠

Π |= let 𝑟 .𝑥 = 𝑒; 𝑠

𝐻 = hosts(𝑠1) ∪ hosts(𝑠2)
∀ℎ ∈ 𝐻 � L(𝑥)→ ⊑ L(ℎ)→
∀ℎ ∈ 𝐻 � L(Π(𝑥))← ⊑ L(ℎ)←
∀ℎ ∈ 𝐻 � local-export(Π(𝑥), ℎ)

Π |= 𝑠1 Π |= 𝑠2

Π |= if 𝑥 then 𝑠1 else 𝑠2

Π |= 𝑠1 Π |= 𝑠2

Π |= if 𝑣 then 𝑠1 else 𝑠2

Π |= 𝑠

Π |= 𝜇𝑋 .𝑠 Π |= 𝑋

Π |= 𝑠1 Π |= 𝑠2

Π |= 𝑠1; 𝑠2 Π |= skip

Figure 2.16: Rules for validating a protocol assignment.

statement), which we denote by annotating the source program. An annotated statement

let 𝑟 .𝑥 = 𝑒 ; 𝑠 means 𝑟 executes 𝑒 and stores the result in 𝑥 ; other protocols in 𝑠 that refer

to 𝑥 receive the value of 𝑥 from 𝑟 .

We first give a declarative specification of when a protocol assignment is correct;

we then explain how to search for such assignments.
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protocols(𝑠) = 𝑅

protocols(let 𝑟 .𝑥 = 𝑒; 𝑠) = {𝑟 } ∪ protocols(𝑠)
protocols(if 𝑡 then 𝑠1 else 𝑠2) = protocols(𝑠1) ∪ protocols(𝑠2)

protocols(𝜇𝑋 .𝑠) = protocols(𝑠)
protocols(𝑋 ) = protocols(𝜇𝑋 .𝑠)

where 𝜇𝑋 .𝑠 is the original definition of 𝑋

protocols(𝑠1; 𝑠2) = protocols(𝑠1) ∪ protocols(𝑠2)
protocols(skip) = ∅

hosts(𝑠) = 𝐻

hosts(𝑠) = ⋃
𝑟∈protocols(𝑠) hosts(𝑟 )

Figure 2.17: Protocols and hosts involved in the execution of a statement. Here, hosts(𝑟 )
is the set of hosts that protocol 𝑟 runs on, specified individually for each protocol.

2.5.1 Validity of Protocol Assignments

Figure 2.16 outlines the conditions under which a protocol assignment is valid. The

judgment Π |= 𝑒 : 𝑟 means that expression 𝑒 can be executed by protocol 𝑟 . Similarly,

the judgment Π |= 𝑠 means that 𝑠 has a valid protocol assignment. The context Π maps

variables to the protocols storing them:

Protocol Contexts Π ::= 𝜖 | Π, 𝑥 : 𝑟

We now describe the rules for validity. The rule for variables states that 𝑥 can only be

read by protocol 𝑟 if 𝑟 has enough confidentiality to read 𝑥 , and the protocol storing 𝑥 can

communicate with 𝑟 , written comm(𝑟𝑥 , 𝑟 ). Not all pairs of protocols can communicate;

the customizable protocol composer, discussed further in section 2.6.1, defines the valid

set of protocol compositions. Other rules restrict where certain expressions can be

executed. The input/output expressions must be executed locally on the relevant host.
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The rule for let statements ensures that the protocol selected for a variable has

enough authority to securely store it. Formally, the label L(𝑟 ) of the protocol storing

𝑥 must act for (⇒) the minimum required authority label L(𝑥) computed for 𝑥 in

section 2.4. Labels L(𝑟 ) are the ones explained in fig. 2.4.

The rule for conditional statements ensures that the control flow is public to and

trusted by all hosts involved in the execution of a conditional statement (fig. 2.17).

The first premise requires that involved hosts have enough confidentiality to read the

value of the conditional guard. The second premise requires that the protocol storing

the guard has enough integrity to supply the guard to the involved hosts. The third

premise ensures that the protocol storing the guard can forward it to the involved hosts,

written local-export(Π(𝑥), ℎ). These premises are trivially satisfied when the guard is a

constant expression.

The judgment local-export(𝑟, ℎ) holds when protocol 𝑟 stores values in a way that

allows host ℎ to receive the cleartext value from 𝑟 without communicating with any

other hosts. For instance, we have local-export(Replication(𝐻 ), ℎ) for all ℎ ∈ 𝐻 , and

local-export(Commitment(ℎp, ℎv), ℎp).

Where necessary, the Viaduct compiler removes these guard visibility constraints

by multiplexing [69] conditional statements into straight-line code. This allows, for

example, the compilation of conditionals with secret guards that require execution in

MPC.

2.5.2 Cost of Protocol Assignments

There can be many valid protocol assignments that securely realize a source program.

To select an optimal assignment, Viaduct attributes a cost to each assignment using an
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cost(let 𝑟 .𝑥 = 𝑒; 𝑠) = cexec(𝑟, 𝑒) +
∑

𝑟 ′∈readers(𝑥,𝑠) ccomm(𝑟, 𝑟 ) + cost(𝑠)
cost(if 𝑡 then 𝑠1 else 𝑠2) = max(cost(𝑠1), cost(𝑠2))

cost(𝜇𝑋 .𝑠) =𝑊loop × cost(𝑠)
cost(𝑋 ) = 0

cost(𝑠1; 𝑠2) = cost(𝑠1) + cost(𝑠2)
cost(skip) = 0

Figure 2.18: Abstract cost model.

abstract cost model, shown in fig. 2.18. Developers can instantiate the abstract model

by modifying the customizable cost estimator, which specifies cexec(𝑟, 𝑠), the cost of

executing statement 𝑠 in protocol 𝑟 ; ccomm(𝑟1, 𝑟2), the cost of communicating between 𝑟1

and 𝑟2; and the global constant𝑊loop, the number of times a loop is assumed to execute

when its iteration count is not statically known.

Our implementation configures cexec to assign a small cost to executing “in the

clear” and a large cost to the use of cryptography, so the compiler avoids the use of

cryptography except when required for security. We also configure the communication

cost ccomm to minimize data movement. For example, a frequently accessed public

variable would be replicated on two hosts so that each host has a local copy. Placing

the variable only on one of the hosts could reduce storage cost but entails frequently

sending its value to the other host.

2.5.3 Computing an Optimal Protocol Assignment

To compute an optimal protocol assignment given a program 𝑠 , the Viaduct compiler

constructs a constrained optimization problem over the following sets of variables:
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Assignment variables (𝛼𝑖) These represent the protocols that execute let-bindings

or declarations.

Cost variables (𝛽𝑖) These represent the cost of executing let-bindings or declarations.

Participating host variables (𝛾𝑖, 𝑗 ) These are true if host 𝑗 is participating in the exe-

cution of a statement 𝑖 .

The compiler generates a set of constraints {𝜙1, . . . , 𝜙𝑛} over these assignment, cost,

and participating host variables, as well as an expression 𝛽𝑠 capturing the cost of 𝑠

as in fig. 2.18. These constraints are drawn from a grammar consisting of logical

connectives, an equality predicate between assignment variables and protocols, and

an equality predicate between cost variables and cost expressions. The compiler uses

an off-the-shelf constraint solver [36] to compute a variable assignment such that all

constraints {𝜙1, . . . , 𝜙𝑛} are satisfied and 𝛽𝑠 is minimized. Define VA(𝑠) to be the set of

valid protocol assignments for 𝑠 , that is,

VA(𝑠) = {𝑠′ | 𝜖 |= 𝑠′ and 𝑠′ ≡ 𝑠 ignoring annotations}.

Then, this solution for the assignment variables corresponds to a protocol assignment

𝑠opt such that

𝑠opt = argmin

𝑠′∈VA(𝑠)
cost(𝑠′).

Protocol Factory

To construct the optimization problem, the compiler draws the set of available protocols

from the customizable protocol factory. Developers wishing to add new protocols to

Viaduct must extend the protocol factory so that the compiler can generate assignments

with these protocols during protocol selection.
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The protocol factory maps each variable to a set of viable protocols that can exe-

cute the let statement for that variable. This allows developers to specify limitations

regarding the use of particular protocols. For example, commitment protocols may be

unable to compute over commitments. Other protocols may lack support for certain

operators.

2.6 Runtime System

Once it has computed a protocol assignment, the Viaduct compiler outputs a program

where every let-binding is annotated with the protocol that will execute it. This anno-

tated program can be executed by the Viaduct runtime, which consists of an extensible

interpreter that interacts with a set of protocol back ends, each of which implement a set

of protocols. The interface for protocol back ends is straightforward: back ends must

implement methods to execute let-binding, and methods to communicate with other

protocol back ends.

Each host runs a copy of the interpreter with the annotated program as input. For

each statement, the interpreter checks whether the host participates in its execution,

as defined by hosts(·)—if not, the statement is treated like skip. If a host participates

in executing a let-binding, the interpreter calls the back end for the protocol assigned

to the statement. To execute a conditional, the host retrieves the cleartext value of the

guard from the protocol back end that stores it, and executes the appropriate branch.

The validity rules for protocol assignments ensure the host is allowed to see the cleartext

value, and that it is able to retrieve it.
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2.6.1 Protocol Composition

The protocol back end executing a let statement must send the computed value to back

ends executing statements that read the bound variable. How one back end sends a

value to another depends on the protocols involved. For example, a statement exe-

cuted in Replication(Alice, Bob) reading a variable computed in SH-MPC(Alice, Bob)

corresponds to executing an MPC circuit and revealing the output to the hosts. On the

other hand, a variable computed in Local(Chuck) might not meaningfully be read by a

statement executed under SH-MPC(Alice, Bob) as it is unclear how the MPC back end

should read local data from an unrelated host.

Viaduct uses the customizable protocol composer to define the set of source and

destination protocols that can communicate. The composer translates communication

between two protocols to a set of messages between hosts participating in the protocols.

Developers whowant to extend Viaduct with support for a new protocol must enumerate

the set of allowed compositions for the protocol and ensure that such compositions are

secure.

Formally, the protocol composer is given a source and a destination protocol 𝑟1, 𝑟2

and a host ℎ ∈ hosts(𝑟1) ∪ hosts(𝑟2). It returns code that ℎ must execute to perform the

communication 𝑟1⇝ 𝑟2. Host ℎ is allowed to send messages to and receive messages

from the other hosts in hosts(𝑟1) ∪ hosts(𝑟2). The Viaduct runtime handles the delivery

of these messages.

Recalling the example from before, when SH-MPC(Alice, Bob) sends a value to

Replication(Alice, Bob), the MPC back ends at Alice and Bob jointly execute a circuit

in an MPC protocol. The MPC back end at Alice then sends the revealed circuit output

to the cleartext back end (which implements Replication(·)) at Alice. There is a corre-
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sponding message between the MPC and cleartext back ends at Bob. Step (3) in fig. 2.5,

which depicts execution of the historical millionaires’ problem, shows this protocol

composition in the context of a larger program.

We describe a select subset of important compositions next. We write Cleartext(𝐻 )

to denote either Local(ℎ) or Replication(𝐻 ), depending on whether 𝐻 contains a single

host or multiple hosts, respectively.

Cleartext(𝐻1) ⇝ Cleartext(𝐻2) We wish to communicate a value replicated across one

set of hosts to a different set of hosts while preserving security. We first look at

some special cases.

Example 2.6.1. Replication(Alice, Bob) ⇝ Local(Chuck). In order to preserve

integrity, Alice and Bob both send the value to Chuck; Chuck checks that the two

values are the same, and aborts if they differ. With this protocol, Alice and Bob

must both be malicious to trick Chuck into accepting a corrupted value. If, for

example, only Alice is malicious, Alice can cause Chuck to abort, but it cannot

cause Chuck to exhibit incorrect behavior.

Example 2.6.2. Local(Alice) ⇝ Replication(Bob,Chuck). Alice sends the value

to Bob and to Chuck. Next, Bob sends the value it receives from Alice to Chuck,

and Chuck does the same for Bob. Finally, Bob and Chuck verify that all values

they received are the same, and abort otherwise. In this protocol, Bob and Chuck

ensure Alice does not equivocate, that is, send different values to Bob and Chuck.

Removing this check would be disastrous. For example, Bob and Chuck could

diverge arbitrarily if the value is used as a guard in an if statement.

Example 2.6.3. Replication(Alice, Bob) ⇝ Replication(Bob,Chuck). Since Bob

already has the value, it does not need to receive it from Alice. Therefore, this
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case is essentially the same as Replication(Alice, Bob) ⇝ Local(Chuck): Alice

and Bob both send the value to Chuck, and Chuck verifies that they are the same.

Bob performs a local copy.

We are now ready to tackle the general case: Cleartext(𝐻1) ⇝ Cleartext(𝐻2).

Hosts that already store the value do not need to receive it (example 2.6.3), so

define 𝐻r = 𝐻2 \𝐻1, the set of hosts that need the value. Each host in 𝐻1 sends

the value to each host in 𝐻r. Each host in 𝐻r ensures all values they received

from hosts 𝐻1 are the same (example 2.6.1). Each host in 𝐻r sends the value they

have to every other host in 𝐻r. Each host in 𝐻r performs an equivocation check

(example 2.6.2).

Local(ℎ1) ⇝ SH-MPC(ℎ1, ℎ2) Host ℎ1 creates a secret input gate while ℎ2 creates a

dummy input gate. We do not commit to how the back end implements secret

inputs, but this could corresponds to ℎ1 creating a secret sharing of its value and

sending one of the shares to ℎ2.

Replication(ℎ1, ℎ2) ⇝ SH-MPC(ℎ1, ℎ2) Hosts ℎ1 and ℎ2 create cleartext input gates.

SH-MPC(ℎ1, ℎ2) ⇝ Local(ℎ1) Both hosts create a secret output gate for ℎ1, and execute

the MPC circuit. Host ℎ1 receives a cleartext output but ℎ2 does not.

SH-MPC(ℎ1, ℎ2) ⇝ Replication(ℎ1, ℎ2) Both hosts create a public output gate and exe-

cute the MPC circuit. Both hosts receive a cleartext output.

Local(ℎp) ⇝ Commitment(ℎp, ℎv) Host ℎp creates a commitment and sends it to ℎv.

Host ℎp stores both the cleartext value and the information necessary to later

open the commitment; ℎv stores the commitment.

Commitment(ℎp, ℎv) ⇝ Local(ℎv) Host ℎp sends to ℎv the information necessary to

open the previously created commitment. Host ℎv opens the commitment and

receives a cleartext value.
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ZKP(ℎp, ℎv) ⇝ Local(ℎv) Host ℎp sends to ℎv a cleartext value and a zero-knowledge

proof that the value is computed correctly.

The creation of a commitment and its opening; the execution of an MPC circuit

and the revealing of its output; a prover sending a zero-knowledge proof to a verifier—

all of these are captured by a composition of one protocol with another. This wide

range of behaviors we can capture as composition illustrates our insight that protocol

composition is a general abstraction to represent the use of cryptographic mechanisms.

2.7 Implementation

We implemented the Viaduct compiler in about 20 KLoC of Kotlin code, which includes

code for the parser, the label constraint solver, protocol selection, and the runtime

system. The code written against the compiler’s extension points—the protocol factory,

the protocol composer, the cost estimator, and the protocol back ends—runs to about 4

KLoC. Viaduct uses the Z3 SMT solver [36] to solve the optimization problem generated

during protocol selection.

The compiler supports the more liberal surface syntax seen in figs. 2.2 and 2.3,

as well as functions with bounded polymorphism on parameter labels. The compiler

specializes functions based on label arguments to label polymorphic functions, allowing

different compiled implementations for the same function.

We implemented four protocol back ends for Viaduct:

Local/Replication The cleartext back end executes code in Local and Replicated pro-

tocols. It maintains a store for objects that directly represent the temporaries
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and assignables of the source program. Computations performed by the cleartext

back end are executed directly.

SH-MPC This back end links Viaduct to ABY [38], a library for two-party semi-honest

MPC. It maintains a store of gate objects that represent circuit components

executed by ABY. Computations performed by the back end build gate objects

that represent the operation performed (e.g., an addition in the source program

creates an ADD gate).

The ABY framework supports execution of circuits in three different schemes—

arithmetic sharing, boolean sharing, and Yao’s garbled circuits—as well as conver-

sions between these, allowing for execution of mixed-protocol circuits. Viaduct

represents each scheme as a separate protocol, but all three are implemented

by a single back end. To generate efficient mixed circuits, we follow Demmler

et al. [38] and Ishaq et al. [55] and estimate inputs to the cost estimator by mea-

suring execution time of individual operations under a particular scheme and

conversions between schemes. We perform measurements for two settings: low-

latency, high-bandwidth (LAN), and high-latency, low-bandwidth (WAN).
6
Thus

the cost estimator has two modes, each of which optimizes compiled programs

for a specific network environment.

Commitment This back end manages commitments, implemented using SHA-256

hashes of data along with a nonce. The back end for the commitment creator

maintains a store of cleartext values along with metadata for commitments. The

back end for the commitment receiver maintains the set of commitments, as

hashes. The commitment back end cannot support computation.

6
Existing work such as Büscher et al. [15] and Ishaq et al. [55] focus on optimizing mixed circuits for

ABY specifically, and as such these employ more sophisticated reasoning about cost for ABY circuits. We

consider it future work to incorporate such techniques into Viaduct.
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ZKP This back end links to libsnark [89], a library for zkSNARKs (zero-knowledge

Succinct Non-interactive ARguments of Knowledge). This back end maintains

a store of circuit gate objects. The prover and verifier both manage cleartext

values for the public inputs to the proof, while only the prover manages cleartext

values for the secret inputs. To ensure the prover cannot modify secret inputs

mid-execution, all secret inputs are “committed” by sending their hash to the

verifier. All proofs that use a secret input then include a clause that equates the

input to the pre-image of the hash held by the verifier.

The libsnark library requires proving and verifying keys to be generated for each

unique circuit before the protocol is executed. The current prototype requires a

“dummy” run of the compiled program to generate these keys.

2.8 Evaluation

To evaluate Viaduct, we address these research questions:

1. Is Viaduct expressive enough?

2. Is its compilation performance acceptable?

3. Does it generate efficient distributed programs?

4. How much does label inference reduce the annotation burden for programmers?

5. What is the overhead of the runtime system?

Experiments used Dell OptiPlex 7050 machines with an 8-core Intel Core i7 7th

Gen CPU and 16GB of RAM. Note that for experiments involving time measurements

(items 2, 3 and 5), the numbers reported are over 5 trials and the relative standard error

is at most 6% of the sample mean.
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Benchmark Description LoC Ann

battleship Model of the board game 79 12

bet C bets who wins hist. millionaires b/w A & B 79 7

biometric match Min distance b/w sample & database [15] 40 8

guessing game Same as in fig. 2.3 16 6

HHI score Market concentration index [94] 22 3

historical millionaires Same as in fig. 2.2 but with arrays 17 3

interval A & B compute interval of combined points; 45 9

C attests point is in interval

k-means Cluster secret points from A & B [15] 82 3

k-means (unrolled) k-means w/ 3 unrolled iterations 174 3

median Median of A & B’s lists [57] 36 6

rock-paper-scissors A & B commit to moves then reveal 56 6

two-round bidding A & B bid for a list of items 34 4

Table 2.1: Benchmark programs. Ann is the minimum number of label annotations

needed to write the program.

Protocols Selection

Benchmark LAN /WAN Vars Time (s)

battleship RZ / RZ 1022 1.0

bet CLRY / CLRY 1022 1.0

biometric match ALRY / ALRY 708 2.0

guessing game RZ / RZ 193 0.4

HHI score ALRY / LRY 285 1.1

historical millionaires LRY / LRY 187 0.7

interval RYZ / RYZ 660 2.8

k-means ARY / RY 1684 7.9

k-means (unrolled) ARY / RY 3629 29.0

median RY / RY 386 1.0

rock-paper-scissors CR / CR 741 1.0

two-round bidding LRY / LRY 575 1.7

Table 2.2: Protocol selection for benchmark programs. Protocols give the protocols
used in the compiled program for either the LAN or WAN setting. Legend for protocols

used: A, B, Y–ABY arithmetic/boolean/Yao sharing; C–Commitment; L–Local; R–
Replicated; Z–ZKP. Selection gives the number of symbolic variables and run time for

protocol selection, averaged across five runs.
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2.8.1 Expressiveness

Table 2.1 shows the benchmarks used for the experiments, and table 2.2 shows the

cryptography synthesized by Viaduct for each benchmark. Several are from prior work,

rewritten in the Viaduct source language. Host configurations are either semi-honest,

as in fig. 2.2, where hosts A and B trust each other for integrity; mutually distrusting as

in fig. 2.3; or are “hybrid” configurations where A and B trust each other but host C is

trusted by neither.

Our benchmarks show that Viaduct can compile programs whose security demands

a variety of cryptographic mechanisms. With hybrid configurations (interval, bet), Via-

duct combines MPC and ZKP to implement different components of a single distributed

program.

2.8.2 Scalability of Compilation

The two main phases of the Viaduct compiler are label inference and protocol selection.

The overhead of label inference is negligible: at most several hundred milliseconds. As

seen in table 2.2, the overhead for protocol selection is more significant, but still on

the order of several seconds for most benchmarks. The longest running benchmark,

k-means, performs most of its computations in MPC. In this case, it may be harder

to converge to the optimal solution since the solver generates a large mixed circuit,

choosing between the three MPC schemes supported by ABY.
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Benchmark Bool YAO Opt-LAN Opt-WAN

biometic match 3.6 2.8 1.0 1.0
HHI score 0.8 0.5 0.3 0.3
historical millionires 1.0 0.6 0.3 0.3
k-means 56.5 44.4 17.7 44.4

median 11.5 12.8 0.7 0.7
2-R bidding 17.3 17.8 3.1 3.1

(a) Run time (in seconds) in the LAN setting.

Benchmark Bool YAO Opt-LAN Opt-WAN

biometic match 95.9 7.1 2.2 2.2
HHI score 9.7 1.6 1.1 0.9
historical millionires 90.6 1.6 0.7 0.7
k-means 696.1 117.4 35.8 117.4

median 1098.7 35.4 31.7 31.7
2-R bidding 184.7 184.5 155.5 155.5

(b) Run time (in seconds) in the WAN setting.

Benchmark Bool YAO Opt-LAN Opt-WAN

biometic match 56.0 52.3 3.9 3.9
HHI score 7.0 2.7 0.5 0.6

historical millionires 4.8 3.1 0.005 0.005
k-means 1273.1 1051.3 180.0 1051.3

median 197.1 327.8 1.0 1.0
2-R bidding 233.0 233.0 4.7 4.7

(c) Communication (in MB) in the LAN/WAN setting.

Table 2.3: Run time and communication of select benchmark programs, averaged across

five runs. Bool and Yao are naive assignments using boolean sharing and Yao sharing,

respectively. Opt-LAN and Opt-WAN are optimal assignments generated by Viaduct

for the LAN and WAN setting, respectively. Best values are highlighted in bold.
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2.8.3 Performance of Compiled Programs

To show that Viaduct can compile efficient distributed programs, we chose a subset

of our benchmarks requiring the use of MPC and compared the execution of optimal

programs generated by Viaduct—for each benchmark, one optimized for local area

networks (LAN) and another for wide area networks (WAN)—with naive protocol

assignments that perform all computation in MPC. The naive ABY assignments use

either boolean sharing or Yao garbled circuits, since arithmetic sharing can only perform

arithmetic operations. We measured executions in a 1Gbit/s LAN and simulated WAN

(100Mbit/s bandwidth and 50ms latency). We configured ABY to use 32-bit integers

and set its security parameter to 128 bits.

Table 2.3 summarizes our results. For some benchmarks (HHI score, historical mil-

lionaires, median, two-round bidding), computation can be securely moved from MPC

to cleartext protocols, making execution much more efficient. Even for benchmarks that

require computations to be almost entirely in MPC (biometric match, k-means), Viaduct

chooses efficient mixed circuits that perform much better than the naive assignments

entirely in boolean sharing or Yao circuits. Viaduct replicates the result in Büscher et al.

[15] (which specifically targets the ABY framework) in choosing a mix of arithmetic

and Yao circuits as optimal assignments for the two benchmarks from that paper, with

the exception of the k-means benchmark in the WAN setting.

2.8.4 Annotation Burden of Security Labels

Security-typed languages add some annotation burden when writing programs. In

practice, host delegation assumptions and labels on downgrading operations suffice to

specify intended security policies in Viaduct programs. To substantiate this claim, we
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LAN WAN

Benchmark Time (s) Slowdown (%) Time (s) Slowdown (%)

biometric match 0.4 150 1.5 50

HHI score 0.3 0 1.0 10

historical millionaires 0.3 0 0.7 0

k-means 1.2 1380 4.1 770

median 0.5 40 31.5 0

2-R bidding 1.6 90 154.7 0

Table 2.4: Run time of LAN-optimized benchmarks hand-written to use ABY directly

and the slowdown of running the same benchmarks through the Viaduct runtime in

LAN and WAN settings.

created two versions of each benchmark program. In one, every variable has a label

annotation; in the other, “erased” version, all such labels are omitted.

For all benchmarks, Viaduct generates the same compiled program for the fully

labeled and the erased versions. The Ann column in Table 2.1 counts label annotations

on erased programs. This is the minimum number of annotations needed to write

the program: effectively, the number of downgrades plus the number of delegations

between hosts. The table shows that the annotation burden is low: most benchmarks

need only a few label annotations.

2.8.5 Overhead of Runtime System

The Viaduct runtime introduces some overhead compared to using cryptographic

libraries like ABY directly. To measure this overhead, we translated Viaduct’s LAN-

optimized outputs for the MPC benchmarks in table 2.3 to directly use the ABY frame-
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work’s API. We then measured the performance of these hand-written programs in the

LAN and WAN settings.
7

Table 2.4 gives running times for the hand-written programs and the overhead

of using the Viaduct runtime. For most benchmarks, the Viaduct runtime incurs an

overhead of at most 150% in the LAN setting; the overhead is reduced to at most 50% in

the WAN setting where network delay is a more significant factor. This overhead is due

to the cost of interpretation and dynamic circuit generation, and can be eliminated by

moving circuit generation to compile time [66, 15].

The markedly larger overhead of the k-means benchmark is due to Viaduct recom-

puting intermediate results. The benchmark has 8 outputs; while Viaduct evaluates

8 smaller MPC circuits each with one output, the hand-written version evaluates one

larger circuit with 8 outputs, taking advantage of shared intermediate computations.

The compiler could, with additional analysis, determine when output gates can be

grouped and executed in the same circuit. We leave this to future work.

2.9 Related Work

Compilation to Cryptographic Protocols

The idea of compiling a high-level program to a cryptographic protocol has been ex-

plored in the context of multiparty computation [51] (e.g., Fairplay [69], SCVM [65],

ObliVM [66], OblivC [98], Wysteria [85], HyCC [15], SCALE-MAMBA [3]), and that of

zero-knowledge proofs (e.g., Pinocchio [79], Geppetto [29], Buffet [95], xjSNARK [58]).

7
Running LAN-optimized programs in the WAN setting does not skew the results since table 2.3

shows that LAN-optimized programs perform roughly the same as WAN-optimized programs in the

WAN setting.
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Earlier work is generally limited to the domain of a particular fixed cryptographic task

(e.g., MPC or ZKP); Viaduct’s novelty is synthesizing efficient protocols across crypto-

graphic tasks. Like SCVM [65], Viaduct can synthesize “hybrid” programs that perform

computations locally, replicated between hosts, or under MPC. This is impossible in

the simple two-point label model that many MPC compilers [3, 66] use, which only

distinguish between public (low) and secret (high) information. Viaduct also does not

fix the number of hosts in a program (unlike [66, 65, 69]), nor fix compiling programs

only under a semi-honest or malicious setting (unlike [85, 66, 65, 58, 95, 79]).

Program Partitioning

Another line of related work [100, 101, 43, 42] describes distributed computations

using sequential programs and captures security requirements using information-flow

labels. The Jif/split compiler [100, 101] synthesizes simple cryptographic primitives such

as cryptographic commitments to satisfy security constraints that would otherwise

be impossible without relying on trusted principals. Unlike Viaduct, Jif/split is not

extensible to new protocols. Later work [43, 42] proves computational soundness for a

similar system under a strong attacker that controls the network and some of the hosts.

However, this work does not support replicating computations (only data replication is

supported), or the other protocols that Viaduct supports.
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CHAPTER 3

PROVABLE SECURITY

Ensuring security for modern distributed applications remains a difficult challenge, as

such systems can cross administrative boundaries and involve parties that do not fully

trust each other. To defend their security policies, security critical applications em-

ploy sophisticated mechanisms such as complex distributed protocols [61, 21], trusted

hardware [71, 49, 28], and advanced uses of cryptography including multiparty com-

putation [69, 66, 3, 85], zero-knowledge proofs [79, 29, 95, 58], and homomorphic

encryption [35, 34, 30].

To ease the development of secure distributed applications, prior work leverages

compilers that translate high-level programs into distributed protocols that employ

advanced security mechanisms. Unfortunately, most compilers only target a single

mechanism, and thus do not support secure combinations of mechanisms. On the other

hand, compilers that perform secure program partitioning [100, 101, 25, 43, 42, 2] do

combine mechanisms, but come with limited or informal correctness guarantees.

In this chapter, we present the first formal security result for program partitioning

that targets multiple cryptographic mechanisms, arbitrary corruption, and adversar-

ially controlled scheduling. We formalize our result in the simulation-based security

framework [17], which establishes a modular foundation for cryptographic protocol

security. Our security proof is primarily concerned with program partitioning itself,

and thus does not reason about the concrete instantiation of cryptographic mechanisms;

however, we discuss how to extend our results to achieve a proof of end-to-end security.

Programming-language techniques for establishing simulation-based security are

still in their infancy [63, 20, 44, 80]. Our security proof requires the incorporation of
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Figure 3.1: Overview of compilation and the correctness proof. Right-to-left arrows

are compilation steps; ≤ are proof steps. Term 𝑤 is a choreography, ⟦·⟧ is endpoint
projection, source(·) is the inverse of host selection, and cor(·) models corruption.

multiple techniques for simulation-based security: information-flow type systems [88]

to define the security policy and guide partitioning, choreographies [73] to define global

programs for distributed executions, and a novel information-flow guided technique

for concurrent program sequentialization [8]. We make the following contributions:

• We formalize a variant of Simplified Universal Composability (SUC) [18] enriched

with information flow, allowing us to capture distributed protocols in the presence

of adversarial scheduling and corruption.

• We show how to model secure program partitioning as a sequence of type-

preserving transformations between security-typed choreographies [73]. The

source program models an idealized sequential execution on a single, trusted

security domain, while the target program models a distributed protocol with

message-passing concurrency between mutually distrusting agents.

• We prove simulation-based security for our model of program partitioning. In-

formally, we show that any adversary interacting with the compiled distributed

program is no more powerful than a corresponding adversary (a simulator) inter-

acting with the source program.
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let 𝑎 : 𝐴 = input Alice;
let 𝑏 : 𝐵 = input Bob;
let 𝑥 = declassify(endorse 𝑎 < endorse 𝑏,𝐴 ∧ 𝐵 → 𝐴 ⊓ 𝐵);
output 𝑥 to Alice

output 𝑥 to Bob

(a) Source program with information-flow labels.

let Alice.𝑎 = input;
Alice.𝑎⇝ MPC(Alice, Bob).𝑎′;
let Bob.𝑏 = input;
Bob.𝑏 ⇝ MPC(Alice, Bob).𝑏′;
letMPC(Alice, Bob).𝑥 = declassify (endorse 𝑎′ < endorse 𝑏′);
MPC(Alice, Bob).𝑥 ⇝ Alice.𝑥1;

MPC(Alice, Bob).𝑥 ⇝ Bob.𝑥2;

output 𝑥1 to Alice

Alice.0⇝ Bob._; // Sync outputs

output 𝑥2 to Bob

(b) Intermediate choreography with explicit communication and synchronization.

// Alice

let 𝑎 = input;
send 𝑎 to MPC(Alice, Bob)
let 𝑥1 = receiveMPC(. . . );
output 𝑥1
send 0 to Bob // Sync

// Bob

let 𝑏 = input;
send 𝑏 to MPC(Alice, Bob)
let 𝑥2 = receiveMPC(. . . );
let _ = receive Alice; // Sync
output 𝑥2

//MPC(Alice, Bob)
let 𝑎′ = receive Alice;
let 𝑏′ = receive Bob;
let 𝑥 = declassify (endorse 𝑎′ < endorse 𝑏′);
send 𝑥 to Alice

send 𝑥 to Bob

(c) Target distributed program derived by projecting choreography.

Figure 3.2: Compiling the Millionaires’ Problem
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3.1 Overview

Formalizing correctness requires being explicit about source, intermediate, and target

languages, so we revisit the classic Millionaires’ Problem [96] from section 2.1.

Figure 3.2a expresses the Millionaires’ Problem as a source program in abstract

syntax. As before, Alice and Bob engage in a protocol to learn who is richer without

revealing their net worth to each other. To do so, the program collects inputs from

Alice and Bob representing their net worth (lines 1 and 2); compares these (line 3), and

outputs the result to Alice and Bob (lines 4 and 5). We use the original formulation of

the problem instead of our “historical” variant, and drop the assumption that Alice and

Bob trust each other for integrity, since these details are not relevant to our discussion.

3.1.1 Information Flow Control

Recall that our source language prevents insecure information flows through a security

type system section 2.3.1. In our example, the declassify expression explicitly allows

revealing the result of the comparison 𝑎 < 𝑏 to Alice and Bob, which is by default

disallowed since the computation reads secrets from both parties. Dually, the endorse

expressions allow untrusted data coming from Alice and Bob to influence the output

from the comparison, which must be trusted since the value is output to both parties.

The endorse expressions are necessary in this version of the problem since we drop

the assumption that Alice and Bob trust each other for integrity.
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Downgrade mechanisms require explicit source and target labels.
1
In fig. 3.2a, we

suppress these labels for the endorse expressions, but show the declassify expression

to move from 𝐴 ∧ 𝐵 to 𝐴 ⊓ 𝐵. The label 𝐴 ∧ 𝐵 is too secret to allow Alice or Bob to see

the value, while the label 𝐴 ⊓ 𝐵 allows both parties to see the value.

3.1.2 Compilation

Given the source program, our compiler proceeds in two stages: first, host selection gen-

erates a choreography [73, 72, 32, 33, 53], a global program that represents a distributed

system by making explicit statement placement and communication. In a choreography,

each statement specifies a host where it is executed; and further, explicit data movement

statements are used to transfer messages between hosts. Hosts may either represent

parties, such as Alice and Bob, or idealized functionalities such as MPC(Alice, Bob), a

(maliciously secure) multiparty computation protocol between Alice and Bob. Next,

endpoint projection [73, 33] produces a distributed program, where each host in the

choreography runs in parallel and interacts via message passing. Figure 3.1 depicts

these compilation steps.

Figure 3.2b shows a choreography where Alice and Bob perform their respective

input and output statements, whileMPC(Alice, Bob) does the comparison. Additionally,

the penultimate line has synchronization between Alice and Bob, which requires Bob to

wait on an input from Alice before delivering his output. This synchronization step is

necessary for the distributed program to match the sequential source program, where

Bob’s output happens after Alice’s. Finally, fig. 3.2c shows the resulting distributed

program corresponding to fig. 3.2b.

1
The syntax we present in section 2.3 requires a single annotation that corresponds to the change in

authority, and relies on inference to reconstruct source and target labels. We make these inferred labels

explicit in our formalism.
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3.1.3 Threat Model

Hosts can be honest, semi-honest, or malicious. Malicious hosts are fully controlled

by the adversary; semi-honest hosts follow the protocol, but leak all their data to

the adversary [64]. We say a host is dishonest if it is semi-honest or malicious, and

nonmalicious if it is honest or semi-honest. The adversary controls all scheduling, even

for honest hosts.

Deviating from section 2.1.4, we remove the assumption that channels between

hosts are private. That is, the adversary can view all message headers (source and

destination), even for messages between honest hosts and those involving the external

environment. The adversary can only view message content when either the source or

destination is dishonest. The adversary may not drop, duplicate, or modify messages

between nonmalicious hosts. This abstraction of secure channels can be realized by

standard techniques, such as TLS [39].

In our model as in most models of cryptographic protocols [17, 7], the adversary can

exploit timing and progress channels since it controls scheduling. These channels make

secret control flow insecure: any discrepancy in timing or progress behavior between

different control-flow paths can be detected by the adversary. Cryptographic applica-

tions must remove secret control flow through multiplexing [69], or other constant-time

programming techniques [22, 9, 11, 93]. Supporting secret control flow requires signif-

icantly changing how attackers are modeled in cryptographic frameworks, which is

beyond the scope of this work. However, we allow public control flow.
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3.1.4 Correctness of Compilation

We formally guarantee secure compilation by drawing on the well established simulation

paradigm from cryptography [64]: the target program is correct if attacks mounted by

the adversary in the “real world” (the target program) can be simulated in the “ideal

world” (source program). Simulation ensures that one only needs to reason about a weak

adversary attacking the source program to understand possible real-world attacks by

an adversary who may corrupt hosts and exploit concurrency by affecting scheduling.

We use transitivity of simulation to break the proof of correctness into simpler

steps, depicted in fig. 3.1. Our proof follows compilation in reverse order: we first

show the correctness of endpoint projection (distributed target programs simulate the

choreography they are derived from), then we show the correctness of host selection

(choreographies simulate their original source programs). Proving the correctness

of endpoint projection allows reasoning using choreographies, which have useful

properties. For instance, unlike arbitrary distributed programs, choreographies cannot

have mismatched sends and receives, which means our proof need not consider such

malformed programs.

There is a wide semantic gap between choreographies and source programs: chore-

ographies are concurrent and specify security through message passing, whereas source

programs are sequential and specify security through information-flow labels. We

therefore split the correctness of host selection into intermediate steps, each dealing

with a separate aspect. We first show choreographies simulate idealized choreogra-

phies, which handles the difference in the notion of security. Then, we show idealized

choreographies simulate sequential choreographies, which shows that host selection

inserts enough synchronization to preserve the sequential meaning of source programs.

Finally, we show sequential choreographies simulate source programs, which is mainly
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a bookkeeping step: choreographies have explicit host annotations for each statement

and source programs do not.

Besides paving the way for end-to-end security, simulation also implies a well-

studied notion of secure compilation, robust hyperproperty preservation (RHP) [1, 80].

Because the compiler satisfies RHP, security conditions (such as noninterference) satis-

fied by a source program automatically hold for the generated target program.

3.1.5 Outline

The rest of this chapter is structured as follows. Section 3.2 formalizes the syntax and se-

mantics of our choreography language, section 3.3 details compilation steps, section 3.5

defines simulation based security, section 3.6 presents our proof, and section 3.7 briefly

discusses how to connect our results to the UC framework.

3.2 Choreography Language

Compilation involves three languages: an interactive source language exposed to pro-

grammers (fig. 3.2a), an intermediate choreography language for high-level description

of distributed systems (fig. 3.2b), and a target process language for implementing code

running on each host (fig. 3.2c). We present a single unified syntax for all three lan-

guages; the source and target languages are subsets of the unified language.

Figure 3.3 gives the syntax of choreographies. The language supports an abstract set

of values—which we assume includes 0—along with operators over them. We distinguish

between pure, atomic expressions 𝑡 , and expressions 𝑒 that may have side effects. The

58



Variables 𝑥 ∈ X Labels ℓ ∈ L Hosts ℎ ∈ H
Values 𝑣 ∈ V ∋ 0
Operators 𝑓 ∈ F

Atomic Expr. 𝑡 ::= 𝑣 | 𝑥
Expressions 𝑒 ::= 𝑓 (𝑡1, . . . , 𝑡𝑛)

| declassify(𝑡, ℓf → ℓt)
| endorse(𝑡, ℓf → ℓt)
| input | output 𝑡
| receive ℎ | send 𝑡 to ℎ ‡

Statements 𝑠 ::= let ℎ.𝑥 = 𝑒; 𝑠

| ℎ1.𝑡 ⇝ ℎ2.𝑥 ; 𝑠 †
| ℎ1 [𝑣] ⇝ ℎ2; 𝑠 †
| if ℎ.𝑡 then 𝑠1 else 𝑠2
| case (ℎ1⇝ ℎ2) {𝑣 ↦→ 𝑠𝑣 }𝑣∈𝑉 ‡
| skip

Channel Endpoints 𝑐 ∈ C = {Adv, Env} ∪ H
Buffers 𝐵 ∈ C × C→ V∗
Processes 𝑤 ::= ⟨𝐻 ⊆ H, 𝐵, 𝑠⟩
Configurations 𝑊 ::= 𝑤1 ∥ · · · ∥ 𝑤𝑛

Figure 3.3: Unified syntax of source, choreography, and target languages. † terms are

choreography only, ‡ are target only.

declassify expression marks locations where private data is explicitly allowed to flow to

public data. Similarly, endorse marks locations where untrustworthy data is explicitly

allowed to influence trusted data. The input/output expressions allow programs to

interact with the external environment [78, 27]. In contrast, receive/send expressions

allow communicating with other hosts.

The let statement let ℎ.𝑥 = 𝑒; 𝑠 represents performing the local computation 𝑒 on

host ℎ, binding the result to variable 𝑥 at ℎ, and continuing as 𝑠 . The computation

can only refer to variables on ℎ. The if statement represents conditional execution;

like let, it names the host performing the computation. The global communication

statement ℎ1.𝑡 ⇝ ℎ2.𝑥 ; 𝑠 represents host ℎ1 sending the value of 𝑡 to ℎ2, which stores

it in variable 𝑥 ; intuitively, it represents a send/receive pair. The selection statement
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ℎ1 [𝑣] ⇝ ℎ2; 𝑠 communicates control flow decisions, and is used to establish knowledge

of choice [73, 72]. Finally, the case statement allows receiving a value from an external

host and branching based on that value.

A process ⟨𝐻, 𝐵, 𝑠⟩ is a choreography 𝑠 along with an input buffer 𝐵 and a set of

hosts 𝐻 ⊆ H. Hosts 𝐻 serve as the identifier for the process, and must contain all hosts

mentioned in 𝑠 . The buffer 𝐵 stores incoming messages as a mapping from channels

(pairs of endpoints 𝑐1𝑐2) to first-in-first-out queues of values. A configuration𝑊 is a

set of processes composed in parallel (using operator ∥). We require the processes in a

configuration to have disjoint hosts.

Knowledge of Choice To understand why choreographies need selection statements

ℎ1 [𝑣] ⇝ ℎ2; 𝑠 , consider this choreography being executed by Alice and Bob:

let Alice.𝑥 = input;

if Alice.𝑥 then Alice[1] ⇝ Bob; let Bob._ = output 1; skip

else Alice[0] ⇝ Bob; skip

Here, Alice branches on her local variable 𝑥 , and within each branch, informs Bob of

the branch taken using selection statements. Importantly, Bob performs an output in

the then branch but not the else branch. Were the selection statements omitted, Bob

could not determine whether to perform his output or not, rendering the choreography

unrealizable as a distributed system.

Embedding Source and Target Programs Choreographies have a concurrent se-

mantics where statements on different hosts can execute out of order. Source programs

are special choreographies with a fully sequential semantics, and target programs

represent a parallel composition of sequential choreographies.
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Messages 𝑚 ∈ M ::= 𝑐1𝑐2𝑣

Actions 𝑎 ∈ A ::= ?𝑚 | !𝑚

actor(𝑎) = 𝑐

actor(?𝑐1𝑐2𝑣) = 𝑐2 actor(!𝑐1𝑐2𝑣) = 𝑐1

Figure 3.4: Syntax of messages and actions.

Source programs are statements 𝑠 that do not contain receive/send expressions, nor

global communication, selection, or case statements. Source programs can be lifted to

configurations consisting of a single process ⟨{∗}, 𝜖, 𝑠⟩, where ∗ is the single locus of

ideal program execution and 𝜖 is the initial, empty buffer.

Target programs are statements 𝑠𝑖 for each host ℎ𝑖 . Target statements do not use

global communication or selection statements.

⟨ℎ1, 𝐵1, 𝑠1⟩ ∥ ⟨ℎ2, 𝐵2, 𝑠2⟩ ∥ · · · ∥ ⟨ℎ𝑛, 𝐵𝑛, 𝑠𝑛⟩

3.2.1 Operational Semantics

We give operational semantics to choreographies using labeled transition systems [73].

First, we define the syntax actions, then we define the transition relations.

Figure 3.4 gives the syntax of messages and actions. An action 𝑎 is either the input

?𝑚 or the output !𝑚 of a message𝑚. A message𝑚 specifies the endpoints 𝑐1 and 𝑐2 of

communication and carries a value 𝑣 . We define actor(𝑎) as the host performing 𝑎: the

sender performs output actions and the receiver performs input actions. Internal steps

are represented as self-communication !ℎℎ0; which allows identifying the host making

progress without adding a new syntactic form.
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Following fig. 3.1, we define two transition relations: ideal stepping

𝑎−→i gives mean-

ing to source programs and idealized choreographies, and real stepping

𝑎−→r gives

meaning to target programs and choreographies that represent target programs. Addi-

tionally, we lift ideal and real stepping to concurrent versions, written

𝑎−→c

i
and

𝑎−→c

r
, to

capture the concurrent semantics of choreographies. We detail these relations next.

Ideal Semantics

Figure 3.5 defines the ideal stepping rules for source programs, given by the stepping

relation−→i. To define the semantics of programs, we define the semantics of expressions

and statements individually, and then lift these semantics generically to processes and

configurations in 3.2.1.

For expressions, we write ℎ.𝑒
𝑎−→i 𝑣 to mean expression 𝑒 evaluates to value 𝑣 at host

ℎ with action 𝑎. We assume operators are total: they map a list of values of any size to a

value. Partial operators (like division) can bemade total using defaults. Formally, we give

meaning to operator application assuming a denotation function eval : F×V∗ → V. We

model declassify and endorse expressions as interactions with the adversary endpoint

Adv. When a value is declassified from a secret label to a public one, the program

outputs the value to Adv. Dually, when a value is endorsed from an untrusted label to

a trusted one, the program takes input from Adv, and uses that value instead. When

the secrecy/integrity of the value does not change, these expressions act as the identity

function and take internal steps. The input/output expressions communicate with

the environment endpoint Env, except on malicious hosts; there, they step internally

and always return 0. In source program and idealized choreographies, receive/send

expressions are only used to communicate with malicious hosts; therefore, they take

internal steps and always return 0.
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ℎ.𝑒
𝑎−→i 𝑣

𝑒-Operator

𝑣 = eval(𝑓 , 𝑣1, . . . , 𝑣𝑛)

ℎ.𝑓 (𝑣1, . . . , 𝑣𝑛)
!ℎℎ0−−−→i 𝑣

𝑒-Declassify

ℓf ∉ P ℓt ∈ P

ℎ.declassify(𝑣, ℓf → ℓt)
!ℎAdv𝑣−−−−−→i 𝑣

𝑒-Declassify-Skip

ℓf ∈ P ∨ ℓt ∉ P

ℎ.declassify(𝑣, ℓf → ℓt)
!ℎℎ0−−−→i 𝑣

𝑒-Endorse

ℓf ∉ T ℓt ∈ T

ℎ.endorse(𝑣, ℓf → ℓt)
?Advℎ𝑣′−−−−−→i 𝑣

′

𝑒-Endorse-Skip

ℓf ∈ T ∨ ℓt ∉ T

ℎ.endorse(𝑣, ℓf → ℓt)
!ℎℎ0−−−→i 𝑣

𝑒-Input

L(ℎ) ∈ T

ℎ.input
?Envℎ𝑣−−−−−→i 𝑣

𝑒-Input-Malicious

L(ℎ) ∉ T

ℎ.input
!ℎℎ0−−−→i 0

𝑒-Output

L(ℎ) ∈ T

ℎ.output 𝑣
!ℎEnv𝑣−−−−→i 0

𝑒-Output-Malicious

L(ℎ) ∉ T

ℎ.output 𝑣
!ℎℎ0−−−→i 0

𝑒-Receive

ℎ.receive ℎ′
!ℎℎ0−−−→i 0

𝑒-Send

ℎ.send 𝑣 to ℎ′
!ℎℎ0−−−→i 0

𝑠
𝑎−→i 𝑠

′

𝑠-Let

ℎ.𝑒
𝑎−→i 𝑣

let ℎ.𝑥 = 𝑒; 𝑠
𝑎−→i 𝑠 [𝑣/𝑥]

𝑠-Communicate

ℎ1.𝑣 ⇝ ℎ2.𝑥 ; 𝑠
!ℎ1ℎ10−−−−→i 𝑠 [𝑣/𝑥]

𝑠-Select

ℎ1 [𝑣] ⇝ ℎ2; 𝑠
!ℎ1ℎ10−−−−→i 𝑠

𝑠-If

𝑖 = if 𝑣 ≠ 0 then 1 else 2

if ℎ.𝑣 then 𝑠1 else 𝑠2
!ℎℎ0−−−→i 𝑠𝑖

Figure 3.5: Ideal stepping rules for expressions and statements.
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ℎ.𝑒
𝑎−→r 𝑣

𝑒-Declassify-Real

ℓf ∉ P ℓt ∈ P

ℎ.declassify(𝑣, ℓf → ℓt)
!ℎℎ0−−−→r 𝑣

𝑒-Endorse-Real

ℓf ∉ T ℓt ∈ T

ℎ.endorse(𝑣, ℓf → ℓt)
!ℎℎ0−−−→r 𝑣

𝑒-Receive-Real

ℎ.receive ℎ′
?ℎ′ℎ𝑣−−−−→r 𝑣

𝑒-Send-Real

ℎ.send 𝑣 to ℎ′
!ℎℎ′𝑣−−−→r 0

𝑠
𝑎−→r 𝑠

′

𝑠-Communicate-Real

ℎ1.𝑣 ⇝ ℎ2.𝑥 ; 𝑠
!ℎ1ℎ2𝑣−−−−→r 𝑠 [𝑣/𝑥]

𝑠-Select-Real

ℎ1 [𝑣] ⇝ ℎ2; 𝑠
!ℎ1ℎ2𝑣−−−−→r 𝑠

𝑠-Case

case (ℎ1⇝ ℎ2) {𝑣 ↦→ 𝑠, . . .} ?ℎ1ℎ2𝑣−−−−→r 𝑠

Figure 3.6: Real stepping rules for expressions and statements. These override the rules

in fig. 3.5.

For statements, we write 𝑠
𝑎−→i 𝑠

′
to mean statement 𝑠 steps to 𝑠′ with action 𝑎.

Statement stepping rules are as expected: let statements step using substitution, if

statements pick a branch based on their conditional, and communication and selection

statements step internally, naming the “sending host” as the host performing the action.

Real Semantics

To give semantics to target programs, fig. 3.6 defines real stepping rules, −→r. These

rules are defined by appropriate modifications of our ideal stepping rules (fig. 3.5).

The declassify/endorse expressions always step internally instead of communicating

with Adv. The receive/send expressions communicate a value with the specified host.

Communication and selection statements step with a visible action instead of internally.
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𝑠
𝑎−→c

𝛼 𝑠′

𝑠-Seqential

𝑠
𝑎−→𝛼 𝑠′

𝑠
𝑎−→c

𝛼 𝑠′

𝑠-Delay

𝑠
𝑎−→c

𝛼 𝑠′ actor(𝑎) ∉ hosts(𝐸)

𝐸 [𝑠] 𝑎−→c

𝛼 𝐸 [𝑠′]

𝑠-If-Delay

𝑠1
𝑎−→c

𝛼 𝑠′
1

𝑠2
𝑎−→c

𝛼 𝑠′
2

actor(𝑎) ≠ ℎ

if ℎ.𝑡 then 𝑠1 else 𝑠2
𝑎−→c

𝛼 if ℎ.𝑡 then 𝑠′
1
else 𝑠′

2

𝐸 hosts(𝐸) = 𝐻

Evaluation Contexts 𝐸 ::= let ℎ.𝑥 = 𝑒; [·] | ℎ1.𝑡 ⇝ ℎ2.𝑥 ; [·] | ℎ1 [𝑣] ⇝ ℎ2; [·]

hosts(let ℎ.𝑥 = 𝑒; [·]){ℎ} hosts(ℎ1.𝑡 ⇝ ℎ2.𝑥 ; [·]){ℎ1, ℎ2}

hosts(ℎ1 [𝑣] ⇝ ℎ2; [·]){ℎ1, ℎ2}

Figure 3.7: Concurrent lifting of ideal/real stepping rules.

Finally, the case statement, on receiving a value on the expected channel, steps to the

specified branch.

Concurrent Lifting for Choreographies

Figure 3.7 lifts an underlying statement-stepping judgment (−→i or −→r) to a concur-

rent judgment, written 𝑠
𝑎−→c

𝛼 𝑠′. Concurrent stepping allows choreographies to step

statements at different hosts out of program order as long as there are no dependencies

between the hosts, and is the standard way choreographies model the behavior of a

distributed system [73].

The rules refer to evaluation contexts, which are statements containing a single

hole, and the function hosts(·), which returns the set of all hosts that appear in an

evaluation context. Rule 𝑠-Delay allows skipping over let, communication, and selection
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statements to step a statement in the middle of a program. Rule 𝑠-If-Delay allows

stepping the body of an if statement without resolving the conditional as long as both

branches step with the same action. Both rules require the actor of the performed action

to be different from the hosts of the statements being skipped over. This matches the

behavior of target programs where code running on a single host is single-threaded.

Synchronous vs. Asynchronous Choreographies In delay rules, requiring only

the actor to be missing from the context leads to an asynchronous semantics [31]. In

a synchronous setting, the side condition would require both endpoints to be missing:

hosts(𝑎) ∩ hosts(𝐸) = ∅. Consider the following program:

let Alice.𝑥1 = input;

Bob.0⇝ Alice.𝑥2;

Here, Alice is waiting on an input from the environment, so is not ready to receive from

Bob. In a synchronous setting, these statements must execute in program order since

Bob can only send if Alice is ready to receive. In an asynchronous setting, sends are

nonblocking, so the second statement can execute ahead of the first.

Processes and Configurations

Figure 3.8 gives stepping rules for buffers, processes, and configurations. All rules in this

figure are parameterized by an underlying stepping relation 𝑠 −→𝛼 𝑠′, where 𝛼 ∈ {i, r}

may either refer to ideal or real stepping rules. A buffer 𝐵 behaves as a FIFO queue

for each channel: it can input a message by appending the received value at the end

of the corresponding queue, and can output the value at the beginning of any queue.

Buffers guarantee in-order delivery within a single channel 𝑐1𝑐2, but messages across

different channels may be reordered. A process𝑤 forwards its input to its buffer if the
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𝐵
𝑎−→ 𝐵′

𝐵-Input

𝐵 [𝑐1𝑐2 := 𝑉 ] ?𝑐1𝑐2𝑣−−−−→ 𝐵 [𝑐1𝑐2 := 𝑉 · 𝑣]
𝐵-Output

𝐵 [𝑐1𝑐2 := 𝑣 ·𝑉 ] !𝑐1𝑐2𝑣−−−−→ 𝐵 [𝑐1𝑐2 := 𝑉 ]

𝑤
𝑎−→𝛼 𝑤 ′

𝑤-Input

𝑐1 ∉ 𝐻 𝑐2 ∈ 𝐻 𝐵
?𝑐1𝑐2𝑣−−−−→ 𝐵′

⟨𝐻, 𝐵, 𝑠⟩ ?𝑐1𝑐2𝑣−−−−→𝛼 ⟨𝐻, 𝐵′, 𝑠⟩

𝑤-Discard

𝑐1 ∈ 𝐻 ∨ 𝑐2 ∉ 𝐻

⟨𝐻, 𝐵, 𝑠⟩ ?𝑐1𝑐2𝑣−−−−→𝛼 ⟨𝐻, 𝐵, 𝑠⟩

𝑤-Internal

𝐵
!𝑐1𝑐2𝑣−−−−→ 𝐵′ 𝑠

?𝑐1𝑐2𝑣−−−−→𝛼 𝑠′

⟨𝐻, 𝐵, 𝑠⟩ !𝑐2𝑐20−−−−→𝛼 ⟨𝐻, 𝐵′, 𝑠′⟩

𝑤-Output

𝑠
!𝑚−−→𝛼 𝑠′

⟨𝐻, 𝐵, 𝑠⟩ !𝑚−−→𝛼 ⟨𝐻, 𝐵, 𝑠′⟩

𝑊
𝑎−→𝛼 𝑊

′

𝑊 -Input

∀𝑖 �𝑤𝑖

?𝑚−−→𝛼 𝑤 ′𝑖

𝑤1 ∥ · · · ∥ 𝑤𝑛

?𝑚−−→𝛼 𝑤 ′
1
∥ · · · ∥ 𝑤 ′𝑛

𝑊 -Output

𝑤𝑖

!𝑚−−→𝛼 𝑤 ′𝑖 ∀𝑗 ≠ 𝑖 �𝑤 𝑗

?𝑚−−→𝛼 𝑤 ′𝑗

𝑤1 ∥ · · · ∥ 𝑤𝑛

!𝑚−−→𝛼 𝑤 ′
1
∥ · · · ∥ 𝑤 ′𝑛

Figure 3.8: Stepping rules for buffers, processes, and configurations.

message is addressed to a relevant host; otherwise,𝑤 discards the message. A process

takes an internal step when its buffer delivers a message to its statement, and an output

step when its statement outputs. A configuration takes an input step by forwarding the

input to all processes in the configuration. When a process in the configuration takes

an output step, the output is fed to all other processes, and becomes the output of the

configuration.
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source(𝑠) = 𝑠′

source(let ℎ.𝑥 = 𝑒; 𝑠) =
{
let ℎ.𝑥 = 𝑒; source(𝑠) I/O(𝑒)
let ∗.𝑥 = 𝑒; source(𝑠) ¬ I/O(𝑒)

source(ℎ1.𝑡 ⇝ ℎ2.𝑥 ; 𝑠) = source(𝑠) [𝑡/𝑥]
source(ℎ1 [𝑣] ⇝ ℎ2; 𝑠) = source(𝑠)

source(if ℎ.𝑡 then 𝑠1 else 𝑠2) = if ∗.𝑡 then source(𝑠1) else source(𝑠2)
source(skip) = skip

I/O(𝑒) = (𝑒 = input) ∨ (∃𝑡 � 𝑒 = output 𝑡)

Figure 3.9: Canonical source program from a choreography.

3.3 Compilation

Compilation consists of two stages: host selection turns a source program into a chore-

ography, and endpoint projection turns a choreography into a target program.

3.3.1 Host Selection

This first compilation stage converts a source program into a choreography. Instead of

committing to a specific host selection algorithm, we give validity criteria for the output

of host selection in the form of an information-flow type system and a synchronization

checking judgment. This generalizes our results beyond the algorithm we present in

section 2.5.

Because a source program can be realized as many different choreographies, host

selection cannot be modeled as a function from source programs to choreographies.

Instead, we formalize the validity of host selection by considering a mapping from

choreographies to source programs.
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Definition 3.3.1 (Valid Host Selection). Choreography 𝑠′ is a valid result of host

selection on source program 𝑠 if source(𝑠′) = 𝑠 , 𝜖 ⊢ 𝑠′, and Δ ⊩ 𝑠′ for some Δ.

Figure 3.9 defines the function source(·), whichmaps a choreography to its canonical

source program by removing communication and selection statements and replacing all

host annotations with ∗ (except those associated with input and output). The judgement

Γ ⊢ 𝑠 denotes that choreography 𝑠 has secure information flows, and Δ ⊩ 𝑠 denotes 𝑠 is

well-synchronized. We define these judgments next.

Information-Flow Checking

First, we give a type system for choreographies based on information-flow control [100,

101, 25, 2] which validates that its corresponding host selection is secure.

Figure 3.10 gives the typing rules. A label context Γ maps a variable to its host and

label:

Label Contexts Γ ::= 𝜖 | Γ, 𝑥 : ℎ.ℓ

Expressions are checked at a particular host ℎ with the judgment Γ ⊢ 𝑒 : ℎ.ℓ ,

which means that 𝑒 has label ℓ under the context Γ. Rule ℓ-Variable ensures hosts

only use variables they own. Rules ℓ-Declassify and ℓ-Endorse enforce nonmalleable

information flow control (NMIFC) [23] by requiring source and target labels to be

uncompromised [97, 23]. NMIFC requires declassified data to be trusted, enforcing

robust declassification, and endorsed data to be public, enforcing transparent endorsement.

These restrictions prevent the adversary from exploiting downgrades. Enforcing NMIFC

is crucial for our simulation result, which we discuss in section 3.6.2.
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Γ ⊢ 𝑡 : ℎ.ℓ Γ ⊢ 𝑒 : ℎ.ℓ

ℓ-Value

Γ ⊢ 𝑣 : ℎ.ℓ

ℓ-Variable

ℓ′ ⊑ ℓ

Γ, 𝑥 : ℎ.ℓ′ ⊢ 𝑥 : ℎ.ℓ

ℓ-Operator

∀𝑖 � Γ ⊢ 𝑡𝑖 : ℎ.ℓ
Γ ⊢ 𝑓 (𝑡1, . . . , 𝑡𝑛) : ℎ.ℓ

ℓ-Declassify

Γ ⊢ 𝑡 : ℎ.ℓf ℓ←
f

= ℓ←
t

▼ℓf ▼ℓt ℓt ⊑ ℓ

Γ ⊢ declassify(𝑡, ℓf → ℓt) : ℎ.ℓ

ℓ-Endorse

Γ ⊢ 𝑡 : ℎ.ℓf ℓ→
f

= ℓ→
t

▼ℓf ▼ℓt ℓt ⊑ ℓ

Γ ⊢ endorse(𝑡, ℓf → ℓt) : ℎ.ℓ

ℓ-Input

L(ℎ) ⊑ ℓ

Γ ⊢ input : ℎ.ℓ

ℓ-Output

Γ ⊢ 𝑡 : ℎ.L(ℎ)
Γ ⊢ output 𝑡 : ℎ.ℓ

ℓ-Receive

L(ℎ′)← ⊑ ℓ

Γ ⊢ receive ℎ′ : ℎ.ℓ

ℓ-Send

Γ ⊢ 𝑡 : ℎ.L(ℎ′)→

Γ ⊢ send 𝑡 to ℎ′ : ℎ.ℓ

Γ ⊢ 𝑠

ℓ-Let

Γ ⊢ 𝑒 : ℎ.ℓ
L(ℎ) ⇒ ℓ Γ, 𝑥 : ℎ.ℓ ⊢ 𝑠

Γ ⊢ let ℎ.𝑥 = 𝑒; 𝑠

ℓ-Communicate

Γ ⊢ 𝑡 : ℎ1.ℓ
L(ℎ2) ⇒ ℓ Γ, 𝑥 : ℎ2.ℓ ⊢ 𝑠

Γ ⊢ ℎ1.𝑡 ⇝ ℎ2.𝑥 ; 𝑠

ℓ-Select

L(ℎ1)← ⊑ L(ℎ2)← Γ ⊢ 𝑠
Γ ⊢ ℎ1 [𝑣] ⇝ ℎ2; 𝑠

ℓ-If

Γ ⊢ 𝑡 : ℎ.0←
Γ ⊢ 𝑠1 Γ ⊢ 𝑠2

Γ ⊢ if ℎ.𝑡 then 𝑠1 else 𝑠2

ℓ-Skip

Γ ⊢ skip

Figure 3.10: Information-flow typing rules for expressions and statements.

In choreographies, receive/send expressions model communication with mali-

cious hosts. Choreographies exclude code for malicious hosts, as these hosts exhibit

arbitrary behavior; thus, we must approximate labels for receive/send expressions.

Rule ℓ-Receive ensures data coming from malicious hosts is considered untrusted; it

treats the data as fully public since we do not care about preserving the confidentiality

of malicious hosts. Rule ℓ-Send ensures secret data is not sent to malicious hosts; it

ignores integrity since malicious hosts are untrusted.
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Δ ⊩ 𝑠

Sync-External

external(𝑒) reset(Δ, ℎ) ⊩ 𝑠 outputting(𝑒) =⇒ synched(Δ, ℎ)
Δ ⊩ let ℎ.𝑥 = 𝑒; 𝑠

Sync-Internal

internal(𝑒) Δ ⊩ 𝑠

Δ ⊩ let ℎ.𝑥 = 𝑒; 𝑠

Sync-Communicate

sync(Δ, ℎ1⇝ ℎ2) ⊩ 𝑠
Δ ⊩ ℎ1.𝑡 ⇝ ℎ2.𝑥 ; 𝑠

Sync-Select

sync(Δ, ℎ1⇝ ℎ2) ⊩ 𝑠
Δ ⊩ ℎ1 [𝑣] ⇝ ℎ2; 𝑠

Sync-If

Δ ⊩ 𝑠1 Δ ⊩ 𝑠2

Δ ⊩ if ℎ.𝑡 then 𝑠1 else 𝑠2

Sync-Skip

Δ ⊩ skip

synched(Δ, ℎ) reset(Δ, ℎ) = Δ′ sync(Δ, ℎ1⇝ ℎ2) = Δ′

synched(Δ, ℎ) = ∀ℎ′ � Δ(ℎ′, ℎ) ⊑ L(ℎ′) ∨ L(ℎ)

reset(Δ, ℎ) = Δ[ℎ, ∗ := 1] [ℎ,ℎ := L(ℎ)]

sync(Δ, ℎ1⇝ ℎ2) = Δ[∗, ℎ2 := Δ(∗, ℎ2) ∧ (Δ(∗, ℎ1) ∨ L(ℎ2))]

Figure 3.11: Checking that a concurrent program acts like a sequential program.

Statement checking rules have the form Γ ⊢ 𝑠 ; they are largely standard [88], but do

not track program counter labels since we require programs to only branch on public,

trusted values. Rules ℓ-Let and ℓ-Communicate check that the host storing a variable

has enough authority to do so. This is the key condition governing secure host selection

and prevents, for example, Bob’s secret data being placed on Alice, or high-integrity

data being placed on an untrusted host. Rule ℓ-Select ensures that if host ℎ1 informs

ℎ2 of a branch being taken, than ℎ1 has at least as much integrity as ℎ2. So malicious

hosts cannot influence control flow on nonmalicious hosts. Finally, rule ℓ-If requires

control flow to be public and trusted.
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Synchronization Checking

Next, we define a novel synchronization judgment, Δ ⊩ 𝑠 , which guarantees that all

external actions in 𝑠 happen in sequential program order. For example, consider the

following choreography:

let Alice.𝑥1 = endorse 𝑥guess;

let Bob.𝑥2 = declassify 𝑥secret;

The endorse corresponds to the adversary committing to a guess, while the declassify

corresponds to the program revealing a secret to the adversary. Even though the

endorse is before the declassify in program order, these expressions are on different

hosts and therefore may be reordered during execution. That is, the adversary may

schedule Bob ahead of Alice, thus learning the secret before committing to a guess.

To enforce program order of these two statements, we synchronize the two hosts via

communication, inserting the statement Alice.0 ⇝ Bob._; between the endorse and

declassify. In turn, Bob only steps after receiving 0 from Alice, which Alice only does

after performing the declassify.

Synchronization becomes more complex when taking corruption into account. For

example, if Alice and Bob synchronize through another host ℎ (Alice⇝ ℎ⇝ Bob) and

ℎ is malicious, ℎ might give Bob the go-ahead before confirming with Alice. We use

integrity labels to ensure synchronization even under corruption.

Figure 3.11 defines the synchronization-checking judgment Δ ⊩ 𝑠 . Here, the context

Δ is an adjacency matrix Δ(ℎ1, ℎ2) mapping pairs of hosts to integrity labels. Intuitively,

a choreography is well-synchronized when for any external (input or output) expression

𝑒 , there exists a high-integrity communication path from 𝑒 to all output expressions
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that come after 𝑒 in the program order.
2
The integrity of a communication path ℎ1⇝

ℎ2⇝ . . .⇝ ℎ𝑛 can be computed from the hosts along the path:

L(ℎ1⇝ ℎ2⇝ . . .⇝ ℎ𝑛) = L(ℎ1)← ∨ L(ℎ2)← ∨ · · · ∨ L(ℎ𝑛)←.

Hosts can be malicious, so each host on the path weakens integrity, which is captured

by disjunction (∨). Multiple paths between the same hosts increase integrity, which we

capture by taking the conjunction (∧) of path labels:

L(paths(ℎ1, ℎ2)) =
∧

path∈paths(ℎ1,ℎ2)
L(path).

We track the integrity of paths through the context, which maps pairs of hosts Δ(ℎ1, ℎ2)

to the integrity label L(paths(ℎ1, ℎ2)).

Rule Sync-External checks a let statement that executes an external expression 𝑒

on ℎ. The continuation is checked under a context where the label of all paths from ℎ to

any other host are set to 1 (this corresponds to removing the paths), since these hosts

now need to synchronize with ℎ. Additionally, if 𝑒 is an output expression, we ensure ℎ

is synchronized with all hosts by checking the following condition, which ensures that

if neither ℎ1 nor ℎ2 is malicious, there exists a communication path from ℎ1 to ℎ2 that

could not have been influenced by the adversary:

L(paths(ℎ1, ℎ2)) ⊑ L(ℎ1) ∨ L(ℎ2). (3.1)

Rules Sync-Communicate and Sync-Select update Δ using sync(Δ, ℎ1⇝ ℎ2). The

function captures the fact that if there is a path from some ℎ to ℎ1, now there is a path

from ℎ to ℎ2 that goes through ℎ1. Additionally, all existing paths are still valid.
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𝑠 @ 𝐻 = 𝑠′

let ℎ.𝑥 = 𝑒; 𝑠 @ 𝐻 =

{
let ℎ.𝑥 = 𝑒; 𝑠 @ 𝐻 ℎ ∈ 𝐻
𝑠 @ 𝐻 o/w

ℎ1.𝑡 ⇝ ℎ2.𝑥 ; 𝑠 @ 𝐻 =


ℎ1.𝑡 ⇝ ℎ2.𝑥 ; 𝑠 @ 𝐻 ℎ1, ℎ2 ∈ 𝐻
let ℎ1._ = send 𝑡 to ℎ2; 𝑠 @ 𝐻 ℎ1 ∈ 𝐻
let ℎ2.𝑥 = receive ℎ1; 𝑠 @ 𝐻 ℎ2 ∈ 𝐻
𝑠 @ 𝐻 o/w

ℎ1 [𝑣] ⇝ ℎ2; 𝑠 @ 𝐻 =


ℎ1 [𝑣] ⇝ ℎ2; 𝑠 @ 𝐻 ℎ1, ℎ2 ∈ 𝐻
let ℎ1._ = send 𝑣 to ℎ2; 𝑠 @ 𝐻 ℎ1 ∈ 𝐻
case (ℎ1⇝ ℎ2) {𝑣 ↦→ 𝑠 @ 𝐻 } ℎ2 ∈ 𝐻
𝑠 @ 𝐻 o/w

if ℎ.𝑡 then 𝑠1 else 𝑠2 @ 𝐻 =

{
if ℎ.𝑡 then 𝑠1 @ 𝐻 else 𝑠2 @ 𝐻 ℎ ∈ 𝐻
merge(𝑠1 @ 𝐻, 𝑠2 @ 𝐻 ) o/w

skip@ 𝐻 = skip

merge(𝑠1, 𝑠2) = 𝑠

merge(𝑠1, 𝑠2) = case (ℎ1⇝ ℎ2) {𝑣 ↦→ 𝑠𝑣 }𝑣∈𝑉1∪𝑉2
where 𝑠1 = case (ℎ1⇝ ℎ2) {𝑣 ↦→ 𝑠𝑣 }𝑣∈𝑉1

𝑠2 = case (ℎ1⇝ ℎ2) {𝑣 ↦→ 𝑠𝑣 }𝑣∈𝑉2
𝑉1 and 𝑉2 disjoint

merge(𝑠1, 𝑠2) = let ℎ.𝑥 = 𝑒; merge(𝑠′
1
, 𝑠′

2
)

where 𝑠1 = let ℎ.𝑥 = 𝑒; 𝑠′
1
, 𝑠2 = let ℎ.𝑥 = 𝑒; 𝑠′

2

Figure 3.12: Endpoint projection and select merge rules.

3.3.2 Endpoint Projection

The second compilation stage, endpoint projection, is a standard procedure in choreo-

graphic programming for extracting a distributed system from a choreography [72, 32].

Given a choreography 𝑠 and a host ℎ, the endpoint projection ⟦𝑠⟧ℎ defines the local
2
Input expressions are input and endorse; output expressions are output and declassify.
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program that ℎ should run. The distributed system is derived by projecting onto each

host in the choreography.

To define endpoint projection, we first define an auxiliary function in fig. 3.12, 𝑠@𝐻 ,

generalized projection, for projecting statements onto a set of hosts. This extra generality

allows modeling malicious corruption in section 3.5.1. Our definition matches the

standard notion of endpoint projection [73] when the set of hosts is a singleton set.

The high-level idea of projecting onto the set of hosts 𝐻 is as follows. If 𝐻 contains

all hosts involved in a statement, the statement stays as is. This is the first case for let,

communication, and selection statements. If 𝐻 contains none of the hosts involved, the

statement is removed entirely. This is the last case for let, communication, and selection

statements. Otherwise, 𝐻 contains some of the involved hosts, and we project based on

the role of 𝐻 . Communication statements become either a send or a receive, depending

on whether 𝐻 contains the sending host or the receiving host. Selection statements are

projected as a send expression, or as a case statement with a single branch.

The most interesting case is for if statements. If the host performing the if statement

is in 𝐻 , then we perform the if as usual and project the branches. Otherwise, hosts 𝐻

do not store the conditional and cannot determine which branch should be taken. In

this case, we require the projections of the two branches to be compatible with each

other, which is formalized using amerge function. Merging requires the two branches to

have the same syntactic structure, but allows case statements to have disjoint branches,

which are combined into one. We elide most cases of the merge function, since our proof

is agnostic to the details. We only rely on the soundness and completeness of endpoint

projection, which is extensively studied in prior work [73, 72, 32, 33, 53]. Additionally,

we lift projection to processes. Projecting a buffer onto 𝐻 keeps only the messages
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destined for 𝐻 , and projecting a process is done component-wise:

(𝐵 @ 𝐻 ) (𝑐1𝑐2) =


𝐵(𝑐1𝑐2) 𝑐1 ∉ 𝐻 ∧ 𝑐2 ∈ 𝐻

𝜖 otherwise

⟨𝐻 ′, 𝐵, 𝑠⟩@ 𝐻 = ⟨𝐻 ∩ 𝐻 ′, 𝐵 @ 𝐻, 𝑠 @ 𝐻 ⟩.

Finally, we define endpoint projection ⟦𝑤⟧ℎ as projecting onto a single host:

⟦𝑤⟧ℎ = 𝑤 @ {ℎ}.

The projection ⟦𝑤⟧ of process𝑤 is the configuration formed by projecting onto each

host in𝑤 :

⟦𝑤 = ⟨𝐻, _, _⟩⟧ = ∥
ℎ∈𝐻
⟦𝑤⟧ℎ .

3.4 Properties of the Language

3.4.1 Typing and Synchronization

Typing ensures robust declassification and transparent endorsement, which guarantee

that declassified values are always trusted, and that endorsed values are always public.

Lemma 3.4.1 (Robust Declassification). If Γ ⊢ declassify(𝑡, ℓf → ℓt) : ℎ.ℓ , ℓf ∉ P, and

ℓt ∈ P, then ℓf ∈ T .

Lemma 3.4.2 (Transparent Endorsement). If Γ ⊢ endorse(𝑡, ℓf → ℓt) : ℎ.ℓ , ℓf ∉ T , and

ℓt ∈ T , then ℓf ∈ P.

Typing has standard properties.

76



Definition 3.4.3 (Refinement). Define

• Γ1 ⊑ Γ2 if (𝑥 : ℎ.ℓ2) ∈ Γ2 implies (𝑥 : ℎ.ℓ1) ∈ Γ1 for some ℓ1 such that ℓ1 ⊑ ℓ2.

• Δ1 ⊑ Δ2 if Δ1(ℎ1ℎ2) ⊑ Δ2(ℎ1ℎ2) for all ℎ1, ℎ2 ∈ 𝐻 .

Lemma 3.4.4 (Subsumption). We have

1. If Γ ⊢ 𝑒 : ℎ.ℓ , Γ′ ⊑ Γ, and ℓ ⊑ ℓ′, then Γ′ ⊢ 𝑒 : ℎ.ℓ′.

2. If Γ ⊢ 𝑠 and Γ′ ⊑ Γ, then Γ′ ⊢ 𝑠 .

3. If Δ ⊩ 𝑠 and Δ′ ⊑ Δ, then Γ′ ⊩ 𝑠 .

Lemma 3.4.5 (Substitution). Substitution preserves typing:

1. If (Γ, 𝑥 : ℎ′.ℓ′) ⊢ 𝑒 : ℎ.ℓ , then Γ ⊢ 𝑒 [𝑣/𝑥] : ℎ.ℓ .

2. If (Γ, 𝑥 : ℎ.ℓ) ⊢ 𝑠 , then Γ ⊢ 𝑠 [𝑣/𝑥].

A well-typed program remains well typed under execution and all corruption.

Lemma 3.4.6 (Type Preservation). If Γ ⊢ 𝑠 and 𝑠
𝑎−→ 𝑠′, then Γ ⊢ 𝑠′.

Lemma 3.4.7 (Robust Typing). If Γ ⊢ 𝑠 , then Γ ⊢ cor(𝑠).

A well-synchronized program remains well synchronized under execution and all

corruption.

Lemma 3.4.8 (Synchrony Preservation). If Δ ⊩ 𝑠 and 𝑠
𝑎−→ 𝑠′, then Δ ⊩ 𝑠′.

Lemma 3.4.9 (Robust Synchrony). If Δ ⊩ 𝑠 , then Δ ⊩ cor(𝑠).

A host can only output if it is synchronized with all previous external actions.

Lemma 3.4.10 (Output Synchronization). If Δ ⊩ 𝑠 and 𝑠
!𝑚−−→ with 𝑚 external, then

synched(Δ, ℎ).

77



3.4.2 Operational Semantics

Below, we write −→ to stand for any of −→i, −→r, −→c

i
, or −→c

r
.

Processes never refuse input.

Lemma 3.4.11 (Input Totality). For all 𝑤 and 𝑚, there exists 𝑤 ′ such that 𝑤
?𝑚−−→ 𝑤 ′.

The stepping judgments are nondeterministic since inputs are externally controlled

(different input values lead to different states), and, for concurrent judgments, out-

puts and internal actions are independent across hosts. However, processes are fully

deterministic when the action is fixed.

Lemma 3.4.12 (Internal Determinism). If 𝑤
𝑎−→ 𝑤1 and 𝑤

𝑎−→ 𝑤2, then𝑤1 = 𝑤2.

Lemma 3.4.13 (Output Determinism). If 𝑤
!𝑚1−−→ 𝑤1, 𝑤

!𝑚2−−→ 𝑤2, and actor(!𝑚1) =

actor(!𝑚2), then𝑚1 =𝑚2.

These results lift to configurations𝑊 as long as the configuration does not contain

duplicate hosts.

3.5 Simulation

Simulation determines when a configuration𝑊1 securely realizes configuration𝑊2: that

is, if every adversary A interacting with𝑊1 can be simulated by some simulator S

(of equal power) running against𝑊2 [17]. The simulator must make the two systems

indistinguishable to any external environment. Since we compare source and target

languages defined by differing operational semantics, our definition of simulation is

between pairs of configurations and their respective operational semantics.
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Definition 3.5.1 (Simulation). ⟨𝑊1,−→1⟩ ≤ ⟨𝑊2,−→2⟩ (𝑊1 simulates𝑊2 under semantics

−→1 and −→2) if

∀A � ∃S � TEnv(⟨A ∥𝑊1,−→1⟩) = TEnv(⟨S ∥𝑊2,−→2⟩).

Here, TEnv(⟨𝑊,−→⟩) is the set of traces, tr = 𝑎1, . . . , 𝑎𝑛, generated by𝑊 restricted

to communication with the environment:

TEnv(⟨𝑊,−→⟩) = {tr |Env |𝑊
tr−→}.

Restriction tr |Env removes all actions in tr where neither the source nor the destination

is Env.

An adversary A or S is an arbitrary process given via a labeled transition system;

the system uses the same actions 𝑎, but need not use our syntax for programs. The rules

for running an adversary in parallel with a configuration are the same as rules𝑊 -Input

and𝑊 -Output.

A copy of every message from the configuration and the environment is delivered to

the adversary; and any output of the adversary is delivered to the configuration and the

environment. However, the adversary can only read a message if at least one endpoint

is dishonest, and can only forge a message from a malicious host.

Definition 3.5.2 (Adversary Interface). For all A:

1. If L(𝑐1) ∈ S∩T and L(𝑐2) ∈ S∩T , thenA
?𝑐1𝑐2𝑣1−−−−−→ A′ if and only ifA ?𝑐1𝑐2𝑣2−−−−−→ A′

for all 𝑣1 and 𝑣2.

2. If A !𝑐1𝑐2𝑣−−−−→, then either 𝑐1 = Adv or L(𝑐1) ∉ T .

Our definition of simulation guarantees perfect (i.e., information-theoretic) security.

In section 3.7, we discuss how to transfer our results to the SUC framework.
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3.5.1 Modeling Malicious Hosts

In target programs, we entirely remove processes that correspond to malicious hosts,

and allow the adversary to act in their stead. To reason about corruption in choreogra-

phies, we use the generalized projection function 𝑤 @ 𝐻 to alter the choreography

corresponding to the set of malicious hosts. Intuitively, if a host is malicious, we remove

it from the choreography, as the adversary forges messages for it; and if the choreog-

raphy has a global communication statement ℎ1.𝑡 ⇝ ℎ2.𝑥 ; 𝑠 where ℎ1 is honest but

ℎ2 is corrupt (or vice versa), then we turn the statement into a send (resp. receive) to

communicate with the adversary. Formally, we corrupt the choreography by projecting

along the set of nonmalicious hosts:

Definition 3.5.3 (Corrupted Choreography). cor(𝑤) is defined as

cor(𝑤) = 𝑤 @ 𝐻 where 𝐻 = {ℎ ∈ H | L(ℎ) ∈ T }.

Removing statements from a choreography to model corruption might seem odd,

but this perfectly mirrors removing malicious hosts from target programs. Note that

corrupted choreographies only show up in intermediate proof steps, in particular, we

do not apply cor(·) to source programs (refer back to fig. 3.1). This means end-to-end

security can be stated and understood without reference to cor(·), and more importantly,

an incorrect definition cannot invalidate our results (it can only make our proof fail).

3.6 Correctness of Compilation

In this section, we prove ourmain result of simulation-based security for our compilation

process. For 𝑤 = ⟨𝐻, 𝐵, 𝑠⟩, we write Γ ⊢ 𝑤 and Δ ⊩ 𝑤 if Γ ⊢ 𝑠 and Δ ⊩ 𝑠 , respectively,

and define source(𝑤) = ⟨𝐻, 𝐵, source(𝑠)⟩.
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Theorem 3.6.1. If 𝜖 ⊢ 𝑤 , and Δ ⊩ 𝑤 for some Δ, then

⟨⟦cor(𝑤)⟧,−→r⟩ ≤ ⟨source(𝑤),−→i⟩.

From definition 3.5.1, it is immediate that simulation is transitive. Therefore, we can

prove theorem 3.6.1 through a series of intermediate simulations, following fig. 3.1 from

left to right. First, in section 3.6.1, we show that endpoint projection is correct, which

allows reasoning using the choreography instead of the distributed program. Next, in

section 3.6.2, we move from the real semantics −→c

r
to the ideal semantics −→c

i
, which

limits all adversarial corruption to declassify and endorse expressions. Then, we show

in section 3.6.3 that our synchronization judgment ensures all externally visible actions

happen in program order. Finally, in section 3.6.4, we prove that the choreography

simulates the source program.

For each simulation, we define a simulator that emulates the adversary “in its head.”

We ensure that the emulated adversary’s view is the same as the real adversary even

though the simulator only has access to public information. Concretely, we establish a

(weak) bisimulation relation [76, 52] between the real world (adversary running against

real configuration) and the ideal world (simulator running against ideal configuration).

3.6.1 Correctness of Endpoint Projection

First, we show that the result of partitioning a choreography simulates the choreography.

Theorem 3.6.2. If 𝜖 ⊢ 𝑤 , then ⟨⟦cor(𝑤)⟧,−→r⟩ ≤ ⟨cor(𝑤),−→c

r
⟩.

A choreography and its endpoint projection match each other action-for-action;

once we prove this fact, showing simulation is trivial since we can pick S = A. The
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choreographic programming literature [73, 72, 32, 33, 53] extensively studies this per-

fect correspondence between a choreography and its projection, and formalizes the

correspondence as strong bisimulation.

To prove that a choreography𝑤 is bisimilar to its endpoint projection ⟦𝑤⟧, we must

define a relation 𝑅 between an arbitrary configuration and process,𝑊1 𝑅 𝑤2, and show

that 𝑅 is a bisimulation. The obvious approach is to define𝑊1 𝑅 𝑤2 if𝑊1 = ⟦𝑤2⟧, but

this idea fails because 𝑅 is not preserved under stepping.

Lemma 3.6.3. Define𝑊1 𝑅 𝑤2 if 𝑊1 = ⟦𝑤2⟧. We claim 𝑅 is not a bisimulation.

Proof. Consider the following choreography and its projection:

// Choreography

𝑤2 = if Alice.1 then Alice[Bob] ⇝ 1; 𝑠1 else Alice[Bob] ⇝ 0; 𝑠2

// Alice

⟦𝑤2⟧Alice = if Alice.1 then send 1 to Bob; ⟦𝑠1⟧Alice else send 0 to Bob; ⟦𝑠2⟧Alice

// Bob

⟦𝑤2⟧Bob = case (Alice⇝ Bob) {1 ↦→ ⟦𝑠1⟧Bob, 0 ↦→ ⟦𝑠2⟧Bob}

Let𝑊1 = ⟦𝑤2⟧; we have𝑊1 𝑅 𝑤2. Now, host Alice can reduce the if statement with an

internal step in both𝑊1 and𝑤2, which gives:

// Choreography

𝑤 ′
2
= Alice[Bob] ⇝ 1; 𝑠1

// Alice

𝑊 ′
1
(Alice) = send 1 to Bob; ⟦𝑠1⟧Alice

// Bob

𝑊 ′
1
(Bob) = case (Alice⇝ Bob) {1 ↦→ ⟦𝑠1⟧Bob, 0 ↦→ ⟦𝑠2⟧Bob}

Note that the process for Bob in𝑊 ′
1
does not match ⟦𝑤 ′

2
⟧Bob, which is

⟦𝑤 ′
2
⟧Bob = case (Alice⇝ Bob) {1 ↦→ ⟦𝑠1⟧Bob}

82



(there is no case for 0).

Thus, we have𝑊1 𝑅 𝑤2,𝑊1

!AliceAlice0−−−−−−−−→𝑊 ′
1
, 𝑤2

!AliceAlice0−−−−−−−−→ 𝑤 ′
2
, but it is not the case

that𝑊 ′
1
𝑅 𝑤 ′

2
. Lemma 3.4.12 implies𝑊 ′

1
is uniquely determined, so there is no other

𝑊 ′′
1
related to𝑤 ′

2
that𝑊1 can step to. Therefore, 𝑅 is not a bisimulation. □

Intuitively, when a choreography reduces an if statement, the branch that is not

taken disappears in one step for all hosts. However, in the projected program, each host

reduces its corresponding case statement separately, which results in extraneous dead

branches during simulation. This is a known issue in the choreography literature [73],

and it does not break bisimilarity; we only need to be smarter about how we define 𝑅.

The solution to the issue raised by lemma 3.6.3 is to ignore extraneous branches when

defining 𝑅. Even though the configuration𝑊 ′
1
has “leftover” branches that projecting

the choreography𝑤 ′
2
does not create, we know that these branches will never be taken.

So we can ignore these branches when defining 𝑅.

Following Montesi [73], we define𝑤1 ⪰ 𝑤2 if𝑤1 and𝑤2 are structurally identical,

except𝑤1 has at least as many branches in case statements as𝑤2. We lift ⪰ pointwise

to configurations. Now, we define𝑊1 𝑅 𝑤2 if𝑊1 ⪰ ⟦𝑤2⟧. We claim 𝑅 is a bisimulation.

Following Montesi [73], the proof is split into showing the soundness and completeness

of endpoint projection.

Lemma 3.6.4 (Soundness of Endpoint Projection). If 𝑊 ⪰ ⟦𝑤⟧ and 𝑤
𝑎−→c

r
𝑤 ′, then

𝑊
𝑎−→r 𝑊

′
for some𝑊 ′ ⪰ ⟦𝑤 ′⟧.

Lemma 3.6.5 (Completeness of Endpoint Projection). If 𝑊 ⪰ ⟦𝑤⟧ and 𝑊
𝑎−→r 𝑊

′
,

then𝑤
𝑎−→c

r
𝑤 ′, for some 𝑤 ′ with𝑊 ′ ⪰ ⟦𝑤 ′⟧.
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Statements 𝑠 ::= . . .

| ℎ1⇝ ℎ2 [𝑣/𝑥]; 𝑠
| ℎ1⇝ ℎ2 [𝑣]; 𝑠

Figure 3.13: The syntax of asynchronous choreographies (extends fig. 3.3).

𝑠
𝑎−→a 𝑠

′

𝑠-Communicate-Send

ℎ1.𝑣 ⇝ ℎ2.𝑥 ; 𝑠
!ℎ1ℎ2𝑣−−−−→a ℎ1⇝ ℎ2 [𝑣/𝑥]; 𝑠

𝑠-Communicate-Receive

ℎ1⇝ ℎ2 [𝑣/𝑥]; 𝑠
!ℎ2ℎ20−−−−→a 𝑠 [𝑣/𝑥]

𝑠-Select-Send

ℎ1 [𝑣] ⇝ ℎ2; 𝑠
!ℎ1ℎ2𝑣−−−−→a ℎ1⇝ ℎ2 [𝑣]; 𝑠

𝑠-Select-Receive

ℎ1⇝ ℎ2 [𝑣]; 𝑠
!ℎ2ℎ20−−−−→a 𝑠

Figure 3.14: Stepping rules for asynchronous choreographies. These override the rules

for −→r in fig. 3.6.

Proving soundness and completeness is largely standard, except for themodifications

needed to handle malicious corruption and asynchronous communication. Handling

malicious corruption does not significantly affect the proof since we make coordinated

changes to both the projected program and the choreography. To maintain the corre-

spondence between projected programs and choreographies in the presence of malicious

corruption, we remove processes running on malicious hosts from projected programs,

and remove statements on malicious hosts in choreographies, both by using cor(·). This

transformation allows us to ignore malicious hosts, so we can invoke the soundness

and completeness results from the literature, except on a smaller set of hosts.

Handling Asynchronous Communication

The presence of asynchrony breaks the perfect correspondence between the projected

program and the choreography: a send/receive pair reduces in two steps in a projected

program, but the corresponding communication statement in the choreography reduces

in only one. We follow prior work [31, 83] and add syntactic forms to choreographies
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to represent partially reduced send/receive pairs (i.e., messages that have been sent

and buffered but not yet received), given in fig. 3.13. These run-time terms only exist to

restore perfect correspondence, and are never written by the programmer.

We extend endpoint projection so that the new syntactic forms are projected as a

receive statement and a message on the receiver’s buffer. For example, while Alice.𝑣 ⇝

Bob.𝑥 ; 𝑠 becomes a send on Alice and a receive on Bob, Alice⇝ Bob[𝑣/𝑥]; 𝑠 becomes

a receive on Bob and a message (from Alice) in Bob’s buffer.

We update the stepping rules for communication and selection statements so that

they reduce to the corresponding run-time terms, which in turn reduce to their contin-

uations. Figure 3.14 gives the updated rules.

These run-time terms are sufficient to restore perfect correspondence, and make

lemmas 3.6.4 and 3.6.5 go through. We refer to Cruz-Filipe and Montesi [31] for details.

Lemma 3.6.6. If 𝜖 ⊢ 𝑤 , then ⟨⟦cor(𝑤)⟧,−→r⟩ ≤ ⟨cor(𝑤),−→c

a
⟩.

Proof. Let S = A. Lemmas 3.6.4 and 3.6.5 immediately give a strong bisimulation. □

Restoring Original Choreography Syntax

Lemma 3.6.6 proves the correctness of endpoint projection for extended choreographies

that have run-time terms. Next, we show a simple simulation that a choreography with

run-time terms simulates one without, removing the need to reason about run-time

terms in later proof steps.

Lemma 3.6.7. If 𝜖 ⊢ 𝑤 , then ⟨cor(𝑤),−→c

a
⟩ ≤ ⟨cor(𝑤),−→c

r
⟩.
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Proof. The simulator follows the control flow by maintaining a public view of the

extended choreography ⟨cor(𝑤),−→c

a
⟩ and runs the adversary against this view. The

simulator behaves the same as the adversary, except when the adversary schedules a

run-time term, the simulator takes an internal step (and does not schedule the original

choreography). □

Proof of theorem 3.6.2. By lemmas 3.6.6 and 3.6.7 using the transitivity of UC simulation.

□

3.6.2 Correctness of Ideal Execution

Next, we show that a choreography stepping with the real rules (fig. 3.6) simulates itself

stepping with the ideal rules (fig. 3.5).

Theorem 3.6.8. If 𝜖 ⊢ 𝑤 , then ⟨cor(𝑤),−→c

r
⟩ ≤ ⟨cor(𝑤),−→c

i
⟩.

The main difference between the two semantics is the interface with the adversary.

With the real semantics, dishonest hosts actively leak data to the adversary (through

send expressions and communication statements), and the adversary controls all data

coming from malicious hosts (through receive expressions). In contrast, the ideal se-

mantics performs all adversarial interaction via declassify and endorse expressions. In

effect, the ideal semantics causes all leakage and corruption to becomemuchmore coarse

grained. Additionally, by eliminating all blocking receive expressions (which commu-

nicate with the adversary), the ideal semantics is able to make progress in a manner

independent of the adversary; this aids our sequentialization proof in section 3.6.3.
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Consider choreography𝑤 and its representation cor(𝑤) when Alice is malicious:

//𝑤

let Alice.𝑥 = input;

Alice.𝑥 ⇝ Bob.𝑦;

Alice.𝑥 ⇝ Chuck.𝑧;

let Bob.𝑦′ = 𝑦 + 1;

Bob.𝑦′⇝ Alice.𝑥′;

// cor(𝑤)

let Bob.𝑦 = receive Alice;

let Chuck.𝑧 = receive Alice;

let Bob.𝑦′ = 𝑦 + 1;

let Bob._ = send 𝑦′ to Alice;

The function cor(·) erases all code on Alice (the first let statement) since a malicious

host does not follow the choreography and has arbitrary behavior. Additionally, it

replaces all communication statements involving Alice with receive/send statements,

capturing the fact that Alice need not use the variables specified in the choreography (𝑥

and 𝑥′). In particular, even though the original choreography specifies Alice sends the

same value to Bob and Chuck, a malicious Alice can send different values. Giving Alice

the power to equivocate in this manner can compromise security, for instance, Alice

could cause Bob and Chuck to disagree on control flow if 𝑥 is used as a conditional

guard. Information-flow checking prevents Alice from exploiting this power.

Information-flow checking ensures untrusted data (from malicious hosts) cannot

influence trusted data (of nonmalicious hosts). We formalize this intuition by erasing

all data from malicious hosts in the ideal semantics: instead of receiving the value of 𝑦

from Alice (i.e., the adversary), Bob simply assigns 0 to 𝑦 (Chuck does the same for 𝑧).

The adversary cannot possibly have any control over trusted data if all data coming

from the adversary is replaced with 0. Note that erasing untrusted data can change the

adversary’s view. In the example, Bob sends 𝑦′ = 𝑦 + 1 to Alice, which is different from

sending 0 + 1. The simulator can compute the correct value in this case since 𝑦 comes

from the adversary (which the simulator has access to), and 1 is a fixed constant. In the
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general case, the simulator can compute all public values, and our type system ensures

only public values are sent to dishonest hosts (rules ℓ-Send and ℓ-Communicate).

In addition to preventing the adversary from corrupting trusted values, we must

prevent the adversary from learning secrets. In the real semantics, the adversary

witnesses all communication and can read any message if at least one endpoint is

dishonest. Information-flow checking ensures the adversary does not learn anything

new by reading these messages. We formalize this intuition by erasing communication:

in the ideal semantics, communication statements step internally. The simulator must

again recreate these hidden messages for the adversary, which is possible since our

type system ensures the messages the adversary can read are public.

Simply discarding all untrusted data and hiding all secret data weakens the adver-

sary in the ideal semantics too much. We bridge the gap between the real and ideal

semantics through downgrade expressions. An endorse expression indicates that some

untrusted data should be treated as trusted, so in the ideal semantics, an endorse inputs

data from the adversary. Dually, a declassify expression indicates some secret data

should be treated as public, so a declassify outputs data to the adversary. Explicit

declassify/endorse expressions capture programmer intent. Going back to the example,

our type system requires Bob and Chuck to endorse 𝑥 before using it in a trusted con-

text. If Bob and Chuck separately endorse 𝑥 , then they might get two different values.

If there is only one endorse (e.g., a separate trusted host performs the endorse and

shares the result), then there can only be one value.

The core of the simulation result is showing that the simulator can use declassify

expressions to recreate all data no longer leaked through communication, and endorse

expressions to influence all data no longer corruptible through receive expressions. For

this to work, we need to ensure the ideal choreography outputs the correct value to
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ℎ.𝑒
𝑎−→sim 𝑣

𝑒-Declassify-Simulator

ℓf ∉ P ℓt ∈ P

ℎ.declassify(𝑣, ℓf → ℓt)
?ℎAdv𝑣′−−−−−→sim 𝑣′

𝑒-Endorse-Simulator

ℓf ∉ T ℓt ∈ T

ℎ.endorse(𝑣, ℓf → ℓt)
!Advℎ𝑣′−−−−−→sim 𝑣

Figure 3.15: Stepping rules used internally by the simulator. These override fig. 3.6.

the simulator when performing a declassify, and we need to ensure the simulator can

input the correct value to the ideal choreography for an endorse. For example, when

the ideal choreography performs declassify 𝑥 , we must ensure the value of 𝑥 is the

same in the real and ideal choreographies. This is nontrivial since the ideal semantics

replaces all untrusted data with 0. Robust declassification requires only trusted data is

declassified, and type checking ensures untrusted data does not influence trusted data.

Thus, 𝑥 is trusted and erased values cannot influence its value. Similarly, when the

ideal choreography performs endorse 𝑥 , the simulator must compute the value 𝑥 would

have in the real choreography and send that to the ideal choreography. Transparent

endorsement requires only public data is endorsed, and the simulator can recreate all

public data.

The simulator maintains a public view of the real process, and runs the adversary

against this view. It uses the rules in fig. 3.15, which flip the roles of declassify and

endorse. We maintain the invariant that the simulator’s version of the choreography

matches the real one on public values, and the ideal choreography matches the real one

on trusted values. Next, we define what it means for two terms to agree on public/trusted

values.

Definition 3.6.9 (Closing Substitution). A closing substitution 𝜎 : Γ is a mapping from

variables to values 𝜎 : dom(Γ) → V.
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Definition 3.6.10 (Channel Label). A channel’s label derives from the labels of its

endpoints:

L(𝑐1𝑐2𝑣) = L(𝑐1𝑐2) = L(𝑐1) ∨ L(𝑐2) L(?𝑚) = L(!𝑚) = L(𝑚).

We let L(Adv) = 0← and L(Env) = 0, which leads to L(Env 𝑐) = L(𝑐 Env) = L(𝑐)

and L(Adv 𝑐) = L(𝑐 Adv) = L(𝑐)← (communication with the adversary is public, and is

trusted only if the other endpoint is).

Definition 3.6.11 (Syntactic 𝐿-Equivalence). For a set of labels 𝐿 ⊆ L, define =𝐿 as

follows.

• 𝑐1𝑐2𝑣1 =𝐿 𝑐1𝑐2𝑣2 if L(𝑐1𝑐2) ∈ 𝐿 implies 𝑣1 = 𝑣2.

• ?𝑚1 =𝐿 ?𝑚2 and !𝑚1 =𝐿 !𝑚2 if𝑚1 =𝐿 𝑚2.

• 𝑠1 =𝐿 𝑠2 if there exist Γ1, Γ2, and 𝑠 with (Γ1, Γ2) ⊢ 𝑠 , and substitutions 𝜎1, 𝜎2 : Γ2

such that 𝜎1(𝑠) = 𝑠1 and 𝜎2(𝑠) = 𝑠2. Additionally, for (𝑥 : ℓ .ℎ) ∈ (Γ1, Γ2), we

require L(ℎ) ⇒ ℓ , and for (𝑥 : ℓ .ℎ) ∈ Γ2, we require ℓ ∉ 𝐿.

• 𝐵1 =𝐿 𝐵2 if 𝐵1(𝑐1𝑐2) = 𝐵2(𝑐1𝑐2) for all 𝑐1 and 𝑐2 such that L(𝑐1𝑐2) ∈ 𝐿.

• ⟨𝐻, 𝐵1, 𝑠1⟩ =𝐿 ⟨𝐻, 𝐵2, 𝑠2⟩ if 𝐵1 =𝐿 𝐵2 and 𝑠1 =𝐿 𝑠2.

We instantiate definition 3.6.11 with 𝐿 = P for agreement on public values, and

with 𝐿 = T for agreement on trusted values. Definition 3.6.11 requires the two terms

to have the same structure, but allows some values 𝑣 ∈ V (those with labels not in 𝐿)

to differ between them. For example, two messages can only be equivalent if they are

on the same channel. Additionally, they must carry the same value if the channel is

public and we are considering public equality (=P); they are allowed to carry different

values otherwise. Action and buffer equivalence simply lift the definition for messages.

Equivalence for statements demands further explanation.
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Values are fixed constants and can be assigned any label. It is therefore not immediate

which values should be allowed to differ between statements. For example, consider

the following statements that have the same structure but differ in the the value of 𝑥 :

// 𝑠1

let Alice.𝑥 = 0;

Alice.𝑥 ⇝ Bob.𝑦;

// 𝑠2

let Alice.𝑥 = 1;

Alice.𝑥 ⇝ Bob.𝑦;

The intuition behind definition 3.6.11 is that 𝑠1 and 𝑠2 are equivalent if 𝑥 can be treated

as secret/untrusted. To check that, definition 3.6.11 abstract out values where the two

statement differ to find a common statement, and type-checks the generalized statement

in a context where all introduced variables are marked as secret/untrusted. For example,

we could pick 𝑠 as follows

// 𝑠

let Alice.𝑥 = 𝑥′;

Alice.𝑥 ⇝ Bob.𝑦;

along with substitutions 𝜎1 = {𝑥′ ↦→ 0} and 𝜎2 = {𝑥′ ↦→ 1}. If 𝑠 can be typed under a

context where 𝑥′ is considered secret, then 𝑠1 =P 𝑠2. However, if Bob has a public label

(is dishonest), for example, then there is no such context.

Definition 3.6.11 splits the context into Γ1 and Γ2, with the substitutions only assign-

ing values for variables in Γ2. Context Γ1 is added to allow relating open terms, which is

needed for inductive cases of some proofs.

For the rest of this section, we assume 𝐿 = P or 𝐿 = T . Moreover, whenever

receive ℎ or send 𝑡 to ℎ appears in a program, we assume L(ℎ) ∉ T (this is ensured by

cor(·)).3

3
Our results hold for more general 𝐿, but we do not need this generality.
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Equivalent choreographies remain equivalent given equivalent inputs and after

producing outputs on the same host.

Lemma 3.6.12 (Equivalence Preservation). Assume 𝑠1 =𝐿 𝑠2 and 𝑠1
𝑎1−→c

r
𝑠′
1
without using

rule 𝑒-Declassify-Real or rule 𝑒-Endorse-Real.

• If 𝑎1 = ?𝑚1, then 𝑠2
?𝑚2−−→c

r
𝑠′
2
with 𝑠′

1
=𝐿 𝑠

′
2
for all𝑚2 =𝐿 𝑚1.

• If 𝑎1 = !𝑚1, then 𝑠2
!𝑚2−−→c

r
𝑠′
2
with 𝑠′

1
=𝐿 𝑠′

2
for some 𝑚2 with actor(!𝑚2) =

actor(!𝑚1).

Proof. By definition 3.6.11, there exists 𝑠 such that Γ ⊢ 𝑠 , 𝜎1(𝑠) = 𝑠1, and 𝜎2(𝑠) = 𝑠2 for

some Γ = (Γ1, Γ2) and 𝜎1, 𝜎2 : Γ2. We proceed by induction on the stepping judgment. In

all cases, stepping on 𝑠1 forces certain atomic expressions 𝑡 to be values 𝑣 (as opposed

to variables 𝑥); the same expressions in 𝑠2 must also be values since 𝜎2 substitutes for

the same variables as 𝜎1. We appeal to this fact implicitly.

• Case 𝑠-Let. We have

𝑠1 = let ℎ.𝑥 = 𝑒1; 𝑠
′′
1

𝑠2 = let ℎ.𝑥 = 𝑒2; 𝑠
′′
2

𝑠 = let ℎ.𝑥 = 𝑒; 𝑠′′

and

ℎ.𝑒1
𝑎1−→r 𝑣1 ℎ.𝑒2

𝑎2−→r 𝑣2

with actor(𝑎1) = actor(𝑎2) = ℎ. Inversion on Γ ⊢ 𝑠 gives

rule ℓ-Let

Γ ⊢ 𝑒 : ℎ.ℓ L(ℎ) ⇒ ℓ Γ, 𝑥 : ℎ.ℓ ⊢ 𝑠′′

Γ ⊢ 𝑠

In each case, we either prove 𝑣1 = 𝑣2 or ℓ ∉ P. When 𝑣1 = 𝑣2, we define

𝑠′ = 𝑠′′[𝑣/𝑥]. We then have Γ ⊢ 𝑠′ by lemma 3.4.5, 𝜎1(𝑠′) = 𝑠′′
1
[𝑣/𝑥] = 𝑠′

1
, and

𝜎2(𝑠′) = 𝑠′′
2
[𝑣/𝑥] = 𝑠′

2
, so 𝑠′

1
=𝐿 𝑠

′
2
.
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When ℓ ∉ P, we define Γ′
2
= (Γ2, 𝑥 : ℎ.ℓ), 𝜎′

1
= 𝜎1 ∪ {𝑥 ↦→ 𝑣1}, 𝜎′2 = 𝜎2 ∪ {𝑥 ↦→ 𝑣2},

which ensures 𝜎′
1
(𝑠′′) = 𝑠′′

1
[𝑣1/𝑥] = 𝑠′

1
and 𝜎′

2
(𝑠′′) = 𝑠′′

2
[𝑣2/𝑥] = 𝑠′

2
. Note that Γ2

satisfies the requirements of definition 3.6.11, and 𝜎′
1
, 𝜎′

2
: Γ′

2
, so 𝑠′

1
=𝐿 𝑠

′
2
.

We case on the expression stepping relation to show one of the requirements.

– Case 𝑒-Operator. We have

𝑒1 = 𝑓 (𝑡1
1
, . . . , 𝑡𝑛

1
) 𝑒2 = 𝑓 (𝑡1

2
, . . . , 𝑡𝑛

2
) 𝑒 = 𝑓 (𝑡1, . . . , 𝑡𝑛).

If all 𝑡 𝑖 are values, then 𝑡 𝑖
1
= 𝑡 𝑖 = 𝑡 𝑖

2
and 𝑣1 = 𝑣2. Otherwise, let 𝑡

𝑖 = 𝑥𝑖 .

Inversion on Γ ⊢ 𝑒 : ℎ.ℓ gives (𝑥𝑖 : ℎ.ℓ′) ∈ Γ2 for ℓ
′ ∉ 𝐿 and ℓ′ ⊑ ℓ , which

implies ℓ ∉ 𝐿.

– Case 𝑒-Declassify-Real. Deliberately excluded; handled by lemma 3.6.17.

– Case 𝑒-Declassify-Skip. Same as the case for rule 𝑒-Operator.

– Case 𝑒-Endorse-Real. Deliberately excluded; handled by lemma 3.6.18.

– Case 𝑒-Endorse-Skip. Same as the case for rule 𝑒-Operator.

– Case 𝑒-Input. We have

𝑒1 = 𝑒2 = 𝑒 = input.

Assume ℓ ∈ 𝐿 since we are done otherwise. Inversion on Γ ⊢ 𝑒 : ℎ.ℓ

gives L(ℎ) ⊑ ℓ , so L(ℎ) ∈ 𝐿, which means L(Envℎ) = L(ℎ) ∈ 𝐿. Thus,

?Envℎ𝑣1 = 𝑎1 = 𝑎2 = ?Envℎ𝑣2 and 𝑣1 = 𝑣2.

– Case 𝑒-Input-Malicious. We have 𝑣1 = 0 = 𝑣2.

– Case 𝑒-Output. We have 𝑣1 = 0 = 𝑣2.

– Case 𝑒-Output-Malicious. We have 𝑣1 = 0 = 𝑣2.

– Case 𝑒-Receive-Real. We have

𝑒1 = 𝑒2 = 𝑒 = receive ℎ′.

We have L(ℎ′) ∉ T by assumption, and L(ℎ′) ∈ P by definition 2.2.1.
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If 𝐿 = P, then L(ℎ′) ∈ 𝐿 so L(ℎ′ℎ) ∈ 𝐿. This gives ?ℎ′ℎ𝑣1 = 𝑎1 = 𝑎2 = ?ℎ′ℎ𝑣2,

so 𝑣1 = 𝑣2.

If 𝐿 = T , then inversion on Γ ⊢ 𝑒 : ℎ.ℓ gives L(ℎ′)← ⊑ ℓ . Since L(ℎ′) ∉ T =

𝐿, we have ℓ ∉ 𝐿.

– Case 𝑒-Send-Real. We have 𝑣1 = 0 = 𝑣2.

• Case 𝑠-Communicate-Real. We have

𝑠1 = ℎ1.𝑣1⇝ ℎ2.𝑥 ; 𝑠
′′
1

𝑠2 = ℎ1.𝑣2⇝ ℎ2.𝑥 ; 𝑠
′′
2

𝑠 = ℎ1.𝑡 ⇝ ℎ2.𝑥 ; 𝑠
′′

and

𝑠1
!ℎ1ℎ2𝑣1−−−−−→r 𝑠

′′
1
[𝑣1/𝑥] 𝑠2

!ℎ1ℎ2𝑣2−−−−−→r 𝑠
′′
2
[𝑣2/𝑥] .

By inversion on Γ ⊢ 𝑠 , we have
rule ℓ-Communicate

Γ ⊢ 𝑡 : ℎ1.ℓ L(ℎ2) ⇒ ℓ Γ, 𝑥 : ℎ2.ℓ ⊢ 𝑠′′

Γ ⊢ ℎ1.𝑡 ⇝ ℎ2.𝑥 ; 𝑠
′′

We case on 𝑡 . If 𝑡 = 𝑣 for some 𝑣 , then 𝑣1 = 𝜎1(𝑣) = 𝑣 = 𝜎2(𝑣) = 𝑣2. Additionally,

Γ ⊢ 𝑠′′[𝑣/𝑥] by lemma 3.4.5, 𝜎1(𝑠′′[𝑣/𝑥]) = 𝑠′′
1
[𝑣/𝑥], and 𝜎2(𝑠′′[𝑣/𝑥]) = 𝑠′′

2
[𝑣/𝑥],

so 𝑠′′
1
[𝑣1/𝑥] =𝐿 𝑠′′2 [𝑣2/𝑥].

Otherwise, 𝑡 = 𝑥′ for some 𝑥′ ∈ dom(Γ2). By inversion on Γ ⊢ 𝑡 : ℎ1.ℓ , we have

(𝑥 : ℎ1.ℓ
′) ∈ Γ2 for some ℓ′ ⊑ ℓ . Since ℓ′ ∉ 𝐿 and ℓ′ ⊑ ℓ , we have ℓ ∉ 𝐿. Define

Γ′
2
= (Γ2, 𝑥 : ℎ2.ℓ), 𝜎′1 = 𝜎1 ∪ {𝑥 ↦→ 𝑣1}, 𝜎′2 = 𝜎2 ∪ {𝑥 ↦→ 𝑣2}, which ensures

𝜎′
1
(𝑠′′) = 𝑠′′

1
[𝑣1/𝑥] and 𝜎′2(𝑠′′) = 𝑠′′

2
[𝑣2/𝑥]. Note that Γ2 satisfies the requirements

of definition 3.6.11, and 𝜎′
1
, 𝜎′

2
: Γ′

2
, so 𝑠′′

1
[𝑣1/𝑥] =𝐿 𝑠′′2 [𝑣2/𝑥].

• Case 𝑠-Select-Real. We have

𝑠1 = ℎ1 [𝑣1] ⇝ ℎ2; 𝑠
′
1

𝑠2 = ℎ1 [𝑣2] ⇝ ℎ2; 𝑠
′
2

𝑠 = ℎ1 [𝑣] ⇝ ℎ2; 𝑠
′

and

𝑠1
!ℎ1ℎ2𝑣1−−−−−→r 𝑠

′
1

𝑠2
!ℎ1ℎ2𝑣2−−−−−→r 𝑠

′
2
.
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Γ ⊢ 𝑠′ (by inversion on Γ ⊢ 𝑠), 𝜎1(𝑠′) = 𝑠′
1
, and 𝜎2(𝑠′) = 𝑠′

2
, thus 𝑠′

1
=𝐿 𝑠

′
2
.

• Case 𝑠-If. We have

𝑠1 = if ℎ.𝑣1 then 𝑠1
1
else 𝑠2

1
𝑠2 = if ℎ.𝑣2 then 𝑠1

2
else 𝑠2

2

𝑠 = if ℎ.𝑡 then 𝑠1 else 𝑠2

and

𝑠1
!ℎℎ0−−−→r 𝑠

𝑖
1

𝑠2
!ℎℎ0−−−→r 𝑠

𝑗

2
.

Inversion on Γ ⊢ 𝑠 (which must be by rule ℓ-If) gives Γ ⊢ 𝑡 : ℎ.0←. Additionally,

𝜎1(𝑡) and 𝜎2(𝑡) are values, so free(𝑡) ⊆ Γ2, meaning Γ2 ⊢ 𝑡 : ℎ.0←. Since 0← ∈ 𝐿

for all attacks (recall definition 2.2.1), and Γ2 only contains variables with labels not

in 𝐿, 𝑡 must be a value, that is, 𝑡 = 𝑣 for some 𝑣 . Then, 𝑣1 = 𝜎1(𝑣) = 𝑣 = 𝜎2(𝑣) = 𝑣2,

so 𝑖 = 𝑗 . Finally, we have 𝑠𝑖
1
=𝐿 𝑠

𝑗

2
since Γ ⊢ 𝑠𝑖 (by inversion on Γ ⊢ 𝑠), 𝜎1(𝑠𝑖) = 𝑠𝑖

1
,

and 𝜎2(𝑠𝑖) = 𝑠𝑖
2
= 𝑠

𝑗

2
.

• Case 𝑠-Case. Impossible by inversion on Γ ⊢ 𝑠 .

• Case 𝑠-Seqential. Immediate by the induction hypothesis.

• Case 𝑠-Delay. We have

𝑠1 = 𝐸1 [𝑠′′1 ] 𝑠2 = 𝐸2 [𝑠′′2 ] 𝑠 = 𝐸 [𝑠′′]

and

𝑠′′
1

𝑎−→c

r
𝑠′′′
1

actor(𝑎) ∉ hosts(𝐸1)

𝑠1
𝑎−→c

r
𝐸1 [𝑠′′′1 ]

𝑠′′
2

𝑎−→c

r
𝑠′′′
2

actor(𝑎) ∉ hosts(𝐸1)

𝑠2
𝑎−→c

r
𝐸2 [𝑠′′′2 ]

Note that (Γ1, Γ′1, Γ2) ⊢ 𝑠′′ where Γ′
1
are the variables defined by 𝐸 (which must

be the same as the ones defined by 𝐸1 and 𝐸2). Thus, 𝑠
′′
1
=𝐿 𝑠′′

2
through 𝑠′′, 𝜎1,

and 𝜎2, and we can apply induction hypothesis to get 𝑠′′′
1

=𝐿 𝑠
′′′
2
. This then gives

𝑠′
1
= 𝐸1 [𝑠′′′1 ] =𝐿 𝐸2 [𝑠′′′2 ]𝑠′2.

• Case 𝑠-If-Delay. Using the induction hypotheses similar to rule 𝑠-Delay. □
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Public-equivalent choreographies produce public-equivalent outputs.

Lemma 3.6.13 (Public Outputs). If 𝑠1 =P 𝑠2, 𝑠1
!𝑚1−−→c

r
, and 𝑠2

𝑎2−→c

r
with actor(!𝑚1) =

actor(𝑎2), then !𝑚1 =P 𝑎2.

Proof. By definition 3.6.11, there exists 𝑠 such that Γ ⊢ 𝑠 , 𝜎1(𝑠) = 𝑠1, and 𝜎2(𝑠) = 𝑠2

for some Γ = (Γ1, Γ2) and 𝜎1, 𝜎2 : Γ2. We proceed by induction on the two stepping

judgments, which must be by the same rule since 𝑠1 and 𝑠2 have the same structure.

Cases for rules 𝑠-Delay and 𝑠-If-Delay follow from the induction hypotheses. Cases

for rules 𝑒-Operator, 𝑒-Declassify-Skip, 𝑒-Endorse-Skip, 𝑒-Output-Malicious, 𝑠-If,

𝑒-Declassify-Real and 𝑒-Endorse-Real are immediate since both actions are internal,

i.e., !𝑚1 = !ℎℎ0 = 𝑎2 for some ℎ, which implies !𝑚1 =P 𝑎2. We detail the remaining

cases.

• Case 𝑠-Let. We have

𝑠1 = let ℎ.𝑥 = 𝑒1; 𝑠
′
1

𝑠2 = let ℎ.𝑥 = 𝑒2; 𝑠
′
2

𝑠 = let ℎ.𝑥 = 𝑒; 𝑠′

and

ℎ.𝑒1
!ℎ𝑐𝑣1−−−→r ℎ.𝑒2

!ℎ𝑐𝑣2−−−→sim .

Inversion on Γ ⊢ 𝑠 gives Γ ⊢ 𝑒 : ℎ.ℓ for L(ℎ) ⇒ ℓ . We case on the expression

stepping relations.

– Case 𝑒-Output. We have 𝑐 = Env, L(ℎ) ∈ T , and

𝑒1 = output 𝑣1 𝑒2 = output 𝑣2 𝑒 = output 𝑡 .

If L(ℎ) ∉ P, then !𝑚1 = !ℎEnv𝑣1 =P !ℎEnv𝑣2 = 𝑎2 immediately, so assume

L(ℎ) ∈ P. Inversion on Γ ⊢ 𝑒 : ℎ.ℓ gives Γ ⊢ 𝑡 : ℎ.L(ℎ). Since L(ℎ) ∈ P,

𝑡 = 𝑣 for some 𝑣 , meaning 𝑣1 = 𝜎1(𝑡) = 𝑣 = 𝜎2(𝑡) = 𝑣2, so !𝑚1 = !ℎEnv𝑣 =

!ℎEnv𝑣 = 𝑎2, and !𝑚1 =P 𝑎2.
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– Case 𝑒-Send-Real. We have 𝑐 = ℎ′ and

𝑒1 = send 𝑣1 to ℎ′ 𝑒2 = send 𝑣2 to ℎ′ 𝑒 = send 𝑡 to ℎ′.

If 𝑡 = 𝑣 for some 𝑣 , then 𝑣1 = 𝑣2 and we are done, so assume 𝑡 = 𝑥′ for

some 𝑥′. Inversion on Γ ⊢ 𝑒 : ℎ.ℓ gives Γ ⊢ 𝑡 : ℎ.L(ℎ′)→. We then have

(𝑥′ : ℓ′.ℎ) ∈ Γ2 with L(ℎ) ⇒ ℓ′, ℓ′ ∉ P, and ℓ′ ⊑ L(ℎ′)→. Then,

ℓ′ ∉ P ∧ L(ℎ) ⇒ ℓ′ =⇒ L(ℎ) ∉ P

ℓ′ ⊑ L(ℎ′)→ ∧ ℓ′ ∉ P =⇒ L(ℎ′)→ ∉ P =⇒ L(ℎ′) ∉ P .

Thus, L(ℎℎ′) ∉ P and !𝑚1 = !ℎℎ′𝑣1 =P !ℎℎ′𝑣2 = 𝑎2.

• Case 𝑠-Communicate-Real. We have

𝑠1 = ℎ1.𝑣1⇝ ℎ2.𝑥 ; 𝑠
′′
1

𝑠2 = ℎ1.𝑣2⇝ ℎ2.𝑥 ; 𝑠
′′
2

𝑠 = ℎ1.𝑡 ⇝ ℎ2.𝑥 ; 𝑠
′′

and

𝑠1
!ℎ1ℎ2𝑣1−−−−−→r 𝑠2

!ℎ1ℎ2𝑣2−−−−−→sim .

By inversion on Γ ⊢ 𝑠 , we have
rule ℓ-Communicate

Γ ⊢ 𝑡 : ℎ1.ℓ L(ℎ2) ⇒ ℓ Γ, 𝑥 : ℎ2.ℓ ⊢ 𝑠′′

Γ ⊢ ℎ1.𝑡 ⇝ ℎ2.𝑥 ; 𝑠
′′

We case on 𝑡 . If 𝑡 = 𝑣 for some 𝑣 , then 𝑣1 = 𝜎1(𝑣) = 𝑣 = 𝜎2(𝑣) = 𝑣2. So

𝑎1 = !ℎ1ℎ2𝑣 = 𝑎2 and 𝑎1 =P 𝑎2.

Otherwise, 𝑡 = 𝑥′ for some 𝑥′ ∈ dom(Γ2). By inversion on Γ ⊢ 𝑡 : ℎ1.ℓ , we have

(𝑥 : ℎ1.ℓ
′) ∈ Γ2 for some ℓ′ ⊑ ℓ . Then,

ℓ′ ∉ P ∧ ℓ′ ⊑ ℓ =⇒ ℓ ∉ P

ℓ′ ∉ P ∧ L(ℎ1) ⇒ ℓ′ =⇒ L(ℎ1) ∉ P

ℓ ∉ P ∧ L(ℎ2) ⇒ ℓ =⇒ L(ℎ2) ∉ P

L(ℎ1) ∉ P ∧ L(ℎ2) ∉ P =⇒ L(ℎ1ℎ2) ∉ P .
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Since L(ℎ1ℎ2) ∉ P, 𝑎1 = !ℎ1ℎ2𝑣1 =P !ℎ1ℎ2𝑣2 = 𝑎2.

• Case 𝑠-Select-Real. We have

𝑠1 = ℎ1 [𝑣1] ⇝ ℎ2; 𝑠
′
1

𝑠2 = ℎ1 [𝑣2] ⇝ ℎ2; 𝑠
′
2

𝑠 = ℎ1 [𝑣] ⇝ ℎ2; 𝑠
′

and

𝑠1
!ℎ1ℎ2𝑣1−−−−−→r 𝑠2

!ℎ1ℎ2𝑣2−−−−−→sim .

Note that selection statements do not allow variables to be communicated, so 𝑠

sending 𝑣 (rather than 𝑡 ) is not a mistake. Thus, we have 𝑣1 = 𝜎1(𝑣) = 𝑣 = 𝜎2(𝑣) =

𝑣2, which means 𝑎1 = !ℎ1ℎ2𝑣 = 𝑎2, which in turn means 𝑎1 =P 𝑎2. □

Trusted-equivalent choreographies produce trusted-equivalent outputs for the envi-

ronment. The statement does not apply to intermediate messages between hosts because

untrusted values can be sent on trusted channels (e.g., a trusted third party can process

untrusted values from other hosts).

Lemma 3.6.14 (Trusted Outputs). If 𝑠1 =P 𝑠2, 𝑠1
!ℎEnv𝑣1−−−−−→c

r
, and 𝑠2

𝑎2−→c

r
with actor(𝑎2) = ℎ,

then !ℎEnv𝑣1 =P 𝑎2.

Proof. By induction on the stepping relations. Inductive cases are handled similarly

to lemma 3.6.13. The only other relevant case is under rule 𝑠-Let with rule 𝑒-Output.

The argument is similar to the case in lemma 3.6.13, but holds because only trusted

values can be output to nonmalicious hosts. □

The simulator’s view of the real choreography stays accurate on public values.

Lemma 3.6.15 (Matching Steps for Public Equivalence). Assume 𝑠1 =P 𝑠2 and 𝑠1
𝑎1−→c

r
𝑠′
1

without using rule 𝑒-Declassify-Real or 𝑒-Endorse-Real.
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• If 𝑎1 = ?𝑚1, then 𝑠2
?𝑚2−−→c

sim
𝑠′
2
with 𝑠′

1
=P 𝑠′

2
for all𝑚2 =P 𝑚1.

• If 𝑎1 = !𝑚1, then 𝑠2
!𝑚2−−→c

sim
𝑠′
2
with 𝑠′

1
=P 𝑠′

2
for some𝑚2 =P 𝑚1.

In addition, the statement holds with the roles of −→c

r
and −→c

sim
reversed (excluding

rules 𝑒-Declassify-Simulator and 𝑒-Endorse-Simulator instead).

Proof. Follows immediately from lemmas 3.6.12 and 3.6.13 since −→c

sim
is equivalent to

−→c

r
except for rules 𝑒-Declassify-Real and 𝑒-Endorse-Real, which we exclude. □

The ideal choreography stays accurate to the real choreography on trusted values.

Lemma3.6.16 (Matching Steps for Trusted Equivalence). Assume 𝑠1 =T 𝑠2 and 𝑠1
𝑎1−→c

r
𝑠′
1

without using rule 𝑒-Declassify-Real or 𝑒-Endorse-Real.

• If 𝑎1 = ?Envℎ𝑣1, then 𝑠2
𝑎2−→c

i
𝑠′
2
with 𝑠′

1
=T 𝑠′

2
for all 𝑎2 =T 𝑎1.

• If 𝑎1 = !ℎEnv𝑣1, then 𝑠2
𝑎2−→c

i
𝑠′
2
with 𝑠′

1
=T 𝑠′

2
for some 𝑎2 =T 𝑎1.

• Otherwise, 𝑠2
!ℎℎ0−−−→c

i
𝑠′
2
with 𝑠′

1
=T 𝑠′

2
and actor(𝑎1) = ℎ.

In addition, the statement holds with the roles of −→c

r
and −→c

i
reversed (excluding

rules 𝑒-Declassify and 𝑒-Endorse instead).

Proof. Follows from lemmas 3.6.12 and 3.6.14. judgment −→c

r
behaves the same as −→c

r

except it replaces some output messages with internal steps. Since this does not affect

the resulting choreographies (only the actions), lemma 3.6.12 applies and shows that

the resulting choreographies are equivalent. The one exception to this rules 𝑒-Receive

and 𝑒-Receive-Real, where the ideal choreography proceeds with 0 instead of receiving

a value; this value is treated as untrusted so the choreographies still agree on trusted

values as required. □
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Assume the simulator’s view agrees with the real choreography on public values,

and the ideal choreography agrees with the real choreography on trusted values. If the

ideal choreography declassifies a value and we feed that value to the simulator, then all

three choreographies remain in agreement. Only trusted values are declassified, so the

ideal choreography outputs the correct value to the simulator.

Lemma 3.6.17 (Equivalence After Declassify). Let 𝑠1 =P 𝑠2 and 𝑠1 =T 𝑠3. If 𝑠1
!ℎℎ0−−−→c

r
𝑠′
1
,

𝑠2
?ℎAdv𝑣−−−−−→c

sim
𝑠′
2
, and 𝑠3

!ℎAdv𝑣−−−−−→c

i
𝑠′
3
, then 𝑠′

1
=P 𝑠′

2
and 𝑠′

1
=T 𝑠′

3
.

Proof. By definition 3.6.11, there exist 𝑠p and 𝑠t such that Γp ⊢ 𝑠p, 𝜎1(𝑠p) = 𝑠1, 𝜎2(𝑠p) = 𝑠2,

and Γt ⊢ 𝑠t, 𝜎′2(𝑠t) = 𝑠2, 𝜎3(𝑠t) = 𝑠3 for Γp = (Γ1, Γ2), 𝜎1, 𝜎2 : Γ2, Γt = (Γ3, Γ4), and 𝜎′2, 𝜎3 : Γ4.

We proceed by induction on the stepping relations. Inductive cases (rules 𝑠-Delay

and 𝑠-If-Delay) are handled similarly to lemma 3.6.15. The only remaining case is when

the steps are by rules 𝑒-Declassify, 𝑒-Declassify-Real and 𝑒-Declassify-Simulator,

respectively. We have

𝑠1 = let ℎ.𝑥 = declassify(𝑣1, ℓf → ℓt); 𝑠′′1 𝑠p = let ℎ.𝑥 = declassify(𝑡p, ℓf → ℓt); 𝑠′′p

𝑠2 = let ℎ.𝑥 = declassify(𝑣2, ℓf → ℓt); 𝑠′′2 𝑠t = let ℎ.𝑥 = declassify(𝑡t, ℓf → ℓt); 𝑠′′t

𝑠3 = let ℎ.𝑥 = declassify(𝑣, ℓf → ℓt); 𝑠′′3

where ℓf ∉ P and ℓt ∈ P, and

𝑠′
1
= 𝑠′′

1
[𝑣1/𝑥] 𝑠′

2
= 𝑠′′

2
[𝑣/𝑥] 𝑠′

3
= 𝑠′′

3
[𝑣/𝑥] .

We claim 𝑣1 = 𝑣 (𝑣2 is ignored by 𝑠2, so it is irrelevant). By lemma 3.4.1 and inversion

on Γt ⊢ 𝑠t, we have ℓf ∈ T . Assume for contradiction that 𝑡t = 𝑥t for some 𝑥t. Then,

(𝑥t : ℎ.ℓ) ∈ Γ4 for ℓ ⊑ ℓf . However, ℓ ∉ T so ℓf ∉ T , which is a contradiction. Thus,

𝑡t = 𝑣t for some 𝑣t. Then, 𝑣1 = 𝜎′
2
(𝑡t) = 𝜎′

2
(𝑣t) = 𝑣t = 𝜎3(𝑣t) = 𝜎3(𝑡t) = 𝑣 .
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Finally, let 𝑠′
p
= 𝑠′′

p
[𝑣/𝑥] and 𝑠′

t
= 𝑠′′

t
[𝑣/𝑥]. We have 𝑠′

1
=P 𝑠′

2
since Γp ⊢ 𝑠′p (inversion

on Γp ⊢ 𝑠p followed by lemma 3.4.5), 𝜎1(𝑠′p) = 𝑠′
1
, and 𝜎2(𝑠′p) = 𝑠′

2
; and we have 𝑠′

2
=T 𝑠′

3

since Γt ⊢ 𝑠′t (inversion on Γt ⊢ 𝑠t, then lemma 3.4.5), 𝜎′
2
(𝑠′
t
) = 𝑠′

2
, and 𝜎3(𝑠′t) = 𝑠′

3
. □

Similarly, if the simulator recreates a value which the ideal choreography endorses,

then all three choreographies remain in agreement. Only public values are endorsed, so

the simulator outputs the correct value to the ideal choreography.

Lemma 3.6.18 (Equivalence After Endorse). Let 𝑠1 =P 𝑠2 and 𝑠1 =T 𝑠3. If 𝑠1
!ℎℎ0−−−→c

r
𝑠′
1
,

𝑠2
!Advℎ𝑣−−−−−→c

sim
𝑠′
2
, and 𝑠3

?Advℎ𝑣−−−−−→c

i
𝑠′
3
, then 𝑠′

1
=P 𝑠′

2
and 𝑠′

1
=T 𝑠′

3
.

Proof. Dual to lemma 3.6.17, but focusing on 𝑠1 =P 𝑠2 and using lemma 3.4.2. □

Lemmas 3.6.15 and 3.6.16 straightforwardly lift from choreographies 𝑠 to processes

𝑤 . Lemma 3.6.15 needs an additional condition on buffer equivalence: for 𝐵1 =P 𝐵2,

we require |𝐵1(𝑐1𝑐2) | = |𝐵2(𝑐1𝑐2) | when L(𝑐1𝑐2) ∉ P. That is, the buffers must agree

exactly on public channels, and agree on the number of messages on secret channels.

This condition allows the simulator to keep track of messages on secret channels even

though it cannot read message contents.

Proof sketch for theorem 3.6.8. We prove simulation as follows.

Simulator The simulator has the form S(A ∥ 𝑤) where 𝑤 is a public view of the

real process. The simulator runs 𝑤 against A for all internal messages. The

simulator forwards inputs from Env toA and𝑤 , and forwards messages fromA

destined for Env to Env. When the ideal process outputs data through a declassify

expression, the simulator inputs this data to𝑤 . Similarly, when𝑤 outputs data
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through an endorse expressions, the simulator forwards this data to the ideal

process.
4

Bisimulation Relation We maintain the invariant that the simulator’s version of the

process matches the real one on public values, and the ideal process matches the

real one on trusted values. More concretely, we defineA ∥ 𝑤1 𝑅 S(A′ ∥ 𝑤) ∥ 𝑤2

if: (1) A = A′, (2) 𝑤1 =P 𝑤 , and (3) 𝑤1 =T 𝑤2 .

Simulation We claim 𝑅 is a weak bisimulation.

Since the simulator’s version of the process matches the real one on public values

(condition (2)), the adversary in the real configuration has a view identical to

the adversary running inside of the simulator (the adversary only sees public

data). Similarly, since the real process matches the ideal one on trusted values,

the environment has the same view in both (the environment is only sent trusted

data).

Condition (1) is preserved since𝑤 is an accurate public view of𝑤1 (condition (2)).

When there are no downgrade actions, lemma 3.6.15 ensures condition (2) is

preserved, and lemma 3.6.16 ensures condition (3) is preserved. Lemmas 3.6.17

and 3.6.18 cover the cases with downgrades. □

3.6.3 Correctness of Sequentialization

Next, we show that a well-synchronized choreography stepping concurrently simulates

itself stepping sequentially.

Theorem 3.6.19. If 𝜖 ⊢ 𝑤 , and Δ ⊩ 𝑤 for some Δ, then ⟨cor(𝑤),−→c

i
⟩ ≤ ⟨cor(𝑤),−→i⟩.

4
The simulator needs to step the ideal process an additional time so that the ideal process pulls the

message from its buffer. This is due to how we define operational rules for processes. This extra step

forces us to use weak bisimulation instead of strong bisimulation.
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The adversary, interacting with the concurrent version of the choreography, can

schedule a statement that is not next in program order. If the statement produces an

externally visible action, the simulator must schedule the same statement. Since the

simulator interacts with the sequential version, it must “unwind” the choreography

by scheduling every statement leading up to the desired statement. Synchronization

ensures unwinding does not fail due to a statement blocked on input (input or endorse),

or a statement that performs a different visible action (output or declassify).

The concurrent and sequential choreographies necessarily fall out of sync during

simulation: the adversary may schedule steps for the concurrent choreography that

the simulator cannot immediately match, and the simulator might schedule steps for

the sequential choreography while unwinding, steps the adversary did not schedule.

Nevertheless, the two choreographies remain joinable: they can reach a common chore-

ography via only internal actions. We prove choreographies are confluent [77, 26, 6],

which ensures joinable processes remain joinable throughout the simulation.

Definition 3.6.20 (Joinable Processes). We write𝑤1 ↓ 𝑤2 if there exist traces tr1 and

tr2 containing only internal actions such that 𝑤1

tr1−−→c

i
𝑤 and 𝑤2

tr2−−→c

i
𝑤 for some 𝑤 .

Diagrammatically:

𝑤1 𝑤2

∃𝑤

tr1 tr2

We prove confluence through a diamond lemma, which allows reordering indepen-

dent actions.

Definition 3.6.21 (Independent Actions). Actions 𝑎1 and 𝑎2 are independent, written

𝑎1 ⊥⊥ 𝑎2, if one is an input while the other is an output, or they are on different channels.

We write tr1 ⊥⊥ tr2 if 𝑎1 ⊥⊥ 𝑎2 for all 𝑎1 ∈ tr1 and 𝑎2 ∈ tr2.
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Lemma 3.6.22 (Diamond for Processes). If 𝑤
tr1−−→c

i
𝑤1,𝑤

tr2−−→c

i
𝑤2, and tr1 ⊥⊥ tr2, then

𝑤1

tr2−−→c

i
𝑤 ′ and 𝑤2

tr1−−→c

i
𝑤 ′ for some 𝑤 ′. Diagrammatically:

𝑤

𝑤1 𝑤2

∃𝑤 ′

tr1 tr2

tr2 tr1

Lemma 3.6.22 does the heavy lifting when proving multiple confluence results below,

and requires quite a bit of work to show. We first prove a diamond lemma for statements,

and then lift it to processes.

Lemma 3.6.23 (Half Diamond for Statements). If 𝑠
𝑎1−→i 𝑠1, 𝑠

𝑎2−→c

i
𝑠2, and 𝑎1 ⊥⊥ 𝑎2, then

𝑠1
𝑎2−→c

i
𝑠′ and 𝑠2

𝑎1−→i 𝑠
′
for some 𝑠′.

Proof. By case analysis on 𝑠
𝑎2−→c

i
𝑠2.

• Case 𝑠-Seqential. Contradicts 𝑎1 ⊥⊥ 𝑎2.

• Case 𝑠-Delay. By case analysis on the evaluation context followed by inversion

on 𝑠
𝑎1−→i 𝑠1. The step for 𝑎1 involves only the head statement and ignores all future

statements, whereas the step for 𝑎2 ignores the head statement and involves only

a statement in the future. Thus, they can be performed in sequence in either order

without changing the end result.

• Case 𝑠-If-Delay. The step for 𝑎2 steps both branches of the if statement, whereas

the step for 𝑎1 selects a branch. They can be performed in sequence in either

order. □

Lemma 3.6.24 (Diamond for Statements). If 𝑠
𝑎1−→c

i
𝑠1, 𝑠

𝑎2−→c

i
𝑠2, and 𝑎1 ⊥⊥ 𝑎2, then

𝑠1
𝑎2−→c

i
𝑠′ and 𝑠2

𝑎1−→c

i
𝑠′ for some 𝑠′.
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Proof. By induction on the derivations of both stepping judgments. If either is by

rule 𝑠-Seqential, we conclude by lemma 3.6.23. Otherwise, both steps ignore the

head of 𝑠 using the same delay rule. We appeal to the induction hypothesis, and use the

same delay rule to get a complete derivation. □

Proof of lemma 3.6.22. We prove the statement when tr1 and tr2 are single actions; the

more general statement follows straightforwardly by induction on tr1 followed by

induction on tr2.

We proceed by case analysis on both stepping judgments.

• Both steps are input (rules𝑤-Input and𝑤-Discard). Since tr1 ⊥⊥ tr2, the input

messages are added at the end of two different queues. Both actions can be

performed in either order without affecting the end result.

• One step is input, the other is by rule𝑤-Internal. The input step adds a message

to a queue, while rule𝑤-Internal pops a message from a queue and feeds it to

the choreography. The queues must be different since tr1 ⊥⊥ tr2, so the steps are

independent.

• One step is input, the other is by rule 𝑤-Output. The input step only affects

the queue, and the output step only affects the choreography, so the steps are

independent.

• Both steps are output (rules 𝑤-Internal and 𝑤-Output). If either step is by

rule𝑤-Internal, then we use tr1 ⊥⊥ tr2 as before to show we pull messages out

of different queues. This allows reordering changes to the buffer. Lemma 3.6.24

finishes the proof. □

The proof of lemma 3.6.22 reasons generically about buffers, and appeals to a

diamond lemma for statements in a black-box manner. This means we can generalize
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lemma 3.6.22 to arbitrary (combinations of) stepping relations without extra work as

long as a diamond property for the same relations holds for statements.

Lemma 3.6.25 (Generalized Diamond for Processes). Assume the diamond property

holds for statements with stepping relations −→1 and −→2. If 𝑤
tr1−−→1 𝑤1,𝑤

tr2−−→2 𝑤2, and

tr1 ⊥⊥ tr2, then𝑤1

tr2−−→2 𝑤
′
and 𝑤2

tr1−−→1 𝑤
′
for some 𝑤 ′.

Proof. Same as the proof of lemma 3.6.22. □

Processes remain joinable after taking internal or matching steps.

Lemma 3.6.26 (Internal Action). If 𝑤1 ↓ 𝑤2 and 𝑤1

𝑎−→c

i
𝑤 ′

1
for 𝑎 internal, then𝑤 ′

1
↓ 𝑤2.

Diagrammatically:

𝑤1 𝑤2

𝑤 ′
1

𝑤 𝑤2

∃𝑤 ′

𝑎
tr1 tr2

tr
′
1

tr
′
2

Proof. Since𝑤1 and𝑤2 are joinable, there exist𝑤 and internal tr1, tr2 such that𝑤1

tr1−−→c

i
𝑤

and𝑤2

tr2−−→c

i
𝑤 . We case on whether 𝑎 ⊥⊥ tr1.

• Case 𝑎 ⊥⊥ tr1. Lemma 3.6.22 gives𝑤 ′ such that𝑤 ′
1

tr1−−→c

i
𝑤 ′ and𝑤

𝑎−→c

i
𝑤 ′. Since 𝑎

and tr2 are internal, so is tr2 · 𝑎. Thus,𝑤 ′1 ↓ 𝑤2 through tr1 and tr2 · 𝑎.

𝑤1 𝑤2

𝑤 ′
1

𝑤

∃𝑤 ′

𝑎 tr1

tr2

tr1

Lemma 3.6.22

𝑎

• Case 𝑎 ⊥̸⊥ tr1. Let 𝑎1 be the first action in tr1 such that 𝑎 ⊥̸⊥ 𝑎1, that is, tr1 =

tr
′
1
·𝑎1 ·tr′′1 with 𝑎 ⊥⊥ tr

′
1
. We have,𝑤1

tr
′
1−−→c

i
𝑤 ′

𝑎1−→c

i
𝑤 ′′

tr
′′
1−−→c

i
𝑤 . Lemma 3.6.22 gives

106



𝑤 ′′
1
such that𝑤 ′

1

tr
′
1−−→c

i
𝑤 ′′

1
and𝑤 ′

𝑎−→c

i
𝑤 ′′

1
. We now have𝑤 ′

𝑎−→c

i
𝑤 ′′

1
and𝑤 ′

𝑎−→c

i
𝑤 ′′,

however, the stepping judgment is deterministic on dependent internal actions,

thus lemma 3.4.13 gives𝑤 ′′
1
= 𝑤 ′′.5 Finally,𝑤 ′

1
↓ 𝑤2 through tr

′
1
· tr′′

1
and tr2.

𝑤1 𝑤2

𝑤 ′
1

𝑤 ′

∃𝑤 ′′
1

𝑤 ′′

𝑤

𝑎 tr
′
1

tr2
tr
′
1

Lemma 3.6.22

𝑎 𝑎1

Lemma 3.4.13

tr
′′
1

□

Lemma 3.6.27 (Matching Actions). If 𝑤1 ↓ 𝑤2, 𝑤1

𝑎−→c

i
𝑤 ′

1
, and 𝑤2

𝑎−→c

i
𝑤 ′

2
, then

𝑤 ′
1
↓ 𝑤 ′

2
. Diagrammatically:

𝑤1 𝑤2

𝑤 ′
1

𝑤 𝑤 ′
2

∃𝑤 ′

𝑎
tr1 tr2 𝑎

tr
′
1

tr
′
2

Proof. Since𝑤1 and𝑤2 are joinable, there exist𝑤 and internal tr1, tr2 such that𝑤1

tr1−−→c

i

𝑤 and 𝑤2

tr2−−→c

i
𝑤 . If 𝑎 is internal, then the result follows by two applications of

lemma 3.6.26. Otherwise, 𝑎 ⊥⊥ tr1 and 𝑎 ⊥⊥ tr2. The result follows from two applications

of lemma 3.6.22, and one application of lemma 3.4.12:

𝑤1 𝑤2

𝑤 ′
1

𝑤 𝑤 ′
2

∃𝑤 ′′
1

∃𝑤 ′′
2

𝑎 tr1 tr2 𝑎

tr1

Lemma 3.6.22

𝑎 𝑎 tr2

Lemma 3.6.22

Lemma 3.4.12

5
More specifically, 𝑎 and 𝑎1 are internal actions, which are represented as outputs. Since 𝑎 ⊥̸⊥ 𝑎1, we

have actor(𝑎) = actor(𝑎1), so lemma 3.4.13 applies.
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□

If a well-typed, well-synchronized program can take an output step concurrently,

then it can take the same step sequentially (after taking the series of internal steps

leading up to the output). We write𝑤
!𝑚−−→→i 𝑤

′
if𝑤

tr · !𝑚−−−−→i 𝑤
′
for some internal tr .

Lemma 3.6.28 (Sequential Execution). If 𝜖 ⊢ 𝑤 , Δ ⊩ 𝑤 , and 𝑤
!𝑚−−→c

i
for 𝑚 external,

then𝑤
!𝑚−−→→i.

Proof sketch. By induction on the stepping relation. If the step is by rule 𝑠-Seqential,

then 𝑤
!𝑚−−→i and we are done. Otherwise, it must be by rule 𝑠-Delay. We need to

show that we can take a sequential internal step by casing on the evaluation context 𝐸.

Note that the top statement in 𝐸 must be internal, otherwise we get a contradiction by

lemma 3.4.10. Since𝑤 has no free variables, it can take an internal step. □

Lemma 3.6.29 (Step Over). If 𝑤1

𝑎1−→c

i
𝑤2

𝑎2−→i, then either 𝑤1

𝑎1−→i 𝑤2, or 𝑤1

𝑎2−→i and

𝑎1 ⊥⊥ 𝑎2.

Proof. Assume the first step cannot be done sequentially (otherwise we are done). Then,

the first step uses a delay rule (rules 𝑠-Delay and 𝑠-If-Delay), which ignores the head

statement of𝑤1. The second step is sequential so it only depends on the head statement

of 𝑤2, which is the same as the head statement of 𝑤1, thus, 𝑤1 can step with 𝑎2. We

get that 𝑎1 ⊥⊥ 𝑎2 from the side conditions on delay rules, which require actor(𝑎1) to be

different from actor(𝑎2). □

Lemma 3.6.30 (Delayed Step). If 𝑤1

𝑎−→c

i
𝑤2

!𝑚−−→→i for 𝑎 internal, then𝑤1

!𝑚−−→→i.

Proof. Unfolding the definition of −→→i gives 𝑤2

tr−→i 𝑤3

!𝑚−−→i for some tr and 𝑤3. We

proceed by induction on tr . In either case, we are done if 𝑤1

𝑎−→i 𝑤2, so assume 𝑤1

cannot perform 𝑎 sequentially.
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• Case tr = 𝜖 . We have 𝑤1

𝑎−→c

i
𝑤2

!𝑚−−→i. Lemma 3.6.29 gives 𝑤1

!𝑚−−→i, and thus

𝑤1

!𝑚−−→→i.

• Case tr = 𝑎′ · tr′. We have 𝑤1

𝑎−→c

i
𝑤2

𝑎′−→i 𝑤3

tr
′
−→i 𝑤4

!𝑚−−→i. Lemma 3.6.29 gives

𝑤1

𝑎′−→i 𝑤
′
2
for some𝑤 ′

2
. Lemma 3.6.25 with lemma 3.6.23 then gives𝑤1

𝑎′−→i 𝑤
′
2

𝑎−→c

i

𝑤 ′
3
for some𝑤 ′

3
, and lemma 3.4.12 shows𝑤 ′

3
= 𝑤3. We use the induction hypothesis

on𝑤 ′
2

𝑎−→c

i
𝑤3

tr
′
−→i 𝑤4

!𝑚−−→i to get𝑤 ′
2

!𝑚−−→→i, and combined with𝑤1

𝑎′−→i 𝑤
′
2
, we get

𝑤1

!𝑚−−→→i.

Diagrammatically (we use tails to denote sequential steps):

𝑤1

𝑤2 ∃𝑤 ′
2

𝑤3 ∃𝑤 ′
3

𝑤4

𝑎 𝑎′ (Lemma 3.6.29)

𝑎′ 𝑎′
Lemma 3.6.25

𝑎
!𝑚 (IH)

tr
′

Lemma 3.4.12

!𝑚

□

If two processes are joinable and one of them can concurrently perform an output

action, then the other can perform the same action sequentially (after unwinding).

Lemma 3.6.31 (Matching Outputs). Let 𝑤1 and 𝑤2 be such that 𝑤1 ↓ 𝑤2, 𝜖 ⊢ 𝑤2, and

Δ ⊩ 𝑤2. If 𝑤1

!𝑚−−→c

i
for 𝑚 external, then𝑤2

!𝑚−−→→i.

Proof. Since𝑤1 and𝑤2 are joinable, there exist𝑤 and internal tr1, tr2 such that𝑤1

tr1−−→c

i
𝑤

and 𝑤2

tr2−−→c

i
𝑤 . Because 𝑚 is external and tr1 is internal, we have !𝑚 ⊥⊥ tr1, so

lemma 3.6.22 gives 𝑤
!𝑚−−→c

i
. Now we have 𝑤2

tr2 · !𝑚−−−−−→c

i
, and we want to show 𝑤2

!𝑚−−→→i.

We proceed by induction on tr2. When tr2 is empty, lemma 3.6.28 completes the proof.
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When tr2 = 𝑎 · tr′
2
, the induction hypothesis gives 𝑤2

𝑎−→c

i
𝑤 ′

2

!𝑚−−→→i, and lemma 3.6.30

gives the desired result. □

Proof of theorem 3.6.19. The simulatormaintains a public view of the concurrent process,

and runs the adversary against this view. When the adversary schedules an output

action, the simulator schedules the sequential process until it performs the same output;

the simulator does nothing for input and internal actions. Lemma 3.6.31 guarantees the

sequential program can perform the output. The primary invariant, that the concurrent

and sequential processes remain joinable, is ensured by lemmas 3.6.26 and 3.6.27.

More formally, we show UC simulation as follows.

Simulator The simulator has the form S(A ∥ 𝑤 ′
1
,𝑤 ′

2
) where𝑤 ′

1
is the public view of

the concurrent process, and𝑤 ′
2
is the public view of the sequential process. When

the simulator receives an input from the environment or a declassify message

from the sequential process, it feeds the message to A, 𝑤 ′
1
, and 𝑤 ′

2
. When the

adversary outputs a value (for the environment or for an endorse expression), the

simulator feeds it to𝑤 ′
1
and𝑤 ′

2
, and outputs the same value. When the simulator

receives an internal message from the sequential process (which indicates the

sequential process has taken a step), it steps 𝑤 ′
2
. The simulator only allows an

output step for the sequential process if𝑤 ′
1
can perform same output.

Bisimulation Relation Let A ∥ 𝑤1 𝑅 S(A′ ∥ 𝑤 ′
1
,𝑤 ′

2
) ∥ 𝑤2 if: (1) A = A′, (2)

𝑤1 =P 𝑤 ′
1
, (3) 𝑤2 =P 𝑤 ′

2
, (4) 𝑤1 ↓ 𝑤2, and (5) 𝜖 ⊢ 𝑤2 and Δ ⊩ 𝑤2 for some Δ.

Simulation We claim 𝑅 is a weak bisimulation.

Conditions (4) and (5) ensure lemma 3.6.31 is applicable, which in turn ensures

the external behavior of both systems is the same.
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Condition (1) is preserved since𝑤 ′
1
is an accurate public view of𝑤1 (condition (2)).

Conditions (2) and (3) are preserved since messages from declassify are sufficient

to maintain a public view. Lemmas 3.6.26 and 3.6.27 ensure condition (4) is

preserved. Lemmas 3.4.6 and 3.4.8 ensure condition (5) is preserved. □

3.6.4 Correctness of Host Selection

Finally, we show that the sequential choreography simulates the original source pro-

gram.

Theorem 3.6.32. If 𝜖 ⊢ 𝑤 , then ⟨cor(𝑤),−→i⟩ ≤ ⟨source(𝑤),−→i⟩.

We break the result into simpler simulations. First, we recover statements removed

by cor(·).

Lemma 3.6.33. If 𝜖 ⊢ 𝑤 , then ⟨cor(𝑤),−→i⟩ ≤ ⟨𝑤,−→i⟩.

Proof. Expressions on malicious hosts only generate internal actions: stepping rules in

fig. 3.5 ensure input/output expressions step internally; typing rules in fig. 3.10 ensure

declassify/endorse expressions step internally. This means cor(𝑤) and𝑤 have the same

external behavior, except𝑤 takes extra internal steps. The simulator follows the control

flow and acts the same as the adversary, but whenever the adversary schedules cor(𝑤),

the simulator schedules𝑤 multiple times until the head statement is at a nonmalicious

host, then it schedules𝑤 once more.

A small caveat: in cor(𝑤), all data from malicious hosts is explicitly replaced with 0,

whereas malicious hosts may store arbitrary data in𝑤 . Since data from malicious hosts

is untrusted, our type system ensures this data does not influence trusted data, which
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includes all output messages. Formally, we only require and maintain that cor(𝑤) and

𝑤 agree on trusted values (formalized using =T ). □

Next, we remove host annotations and explicit communication.

Lemma 3.6.34. If 𝜖 ⊢ 𝑤 , then ⟨𝑤,−→i⟩ ≤ ⟨source(𝑤),−→i⟩.

Proof. Statements removed by source(·) only produce internal actions, which the simu-

lator can recreate. Host annotations do not affect program behavior beyond changing the

source and destination of internal actions and actions generated by declassify/endorse

expressions; the simulator must recover the original host names before forwarding

messages from/to the adversary.

The simulator maintains a public view of𝑤 and runs the adversary against this view.

When the adversary steps 𝑤 , the simulator steps source(𝑤) only if the statement is

preserved by source(·); it does nothing otherwise. To handle declassify, whenever the

simulator receives a message of the form ∗Adv𝑣 , the simulator inspects its copy of𝑤 to

determine the sending host ℎ, and sends ℎAdv𝑣 to the adversary instead. Similarly, to

handle endorse, the simulator replaces ℎ with ∗ in messages Advℎ𝑣 from the adversary.

□

Proof of theorem 3.6.32. Immediate from lemmas 3.6.33 and 3.6.34. □

3.7 Instantiating Cryptographic Hosts

Our simulation result is a necessary and novel first step toward constructing a verified,

secure compiler for distributed protocols that use cryptography. We have abstracted all
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cryptographic mechanisms into idealized hosts (e.g., MPC(Alice, Bob)); thus, to achieve

a full end-to-end security proof, these idealized hosts must be securely instantiated

with cryptographic subprotocols (e.g., BGW [12] for multiparty computation). Such an

instantiation would imply UC security for all compiled programs, in contrast to existing

formalization efforts for individual protocols [20, 10, 44].

To this end, we show how distributed protocols arising from compilation correspond

to hybrid protocols in the Simplified Universal Composability (SUC) framework [18].

Then, we show how to take advantage of the composition theorem in SUC to obtain

secure instantiations of cryptographic protocols.

Simplified UC Let 𝑠 be a choreography with partitioning ⟦𝑠⟧. We construct a corre-

sponding SUC protocol ⟦𝑠⟧SUC which behaves identically to the partitioned choreogra-

phy, with minor differences due to the differing computational models.

Each host in 𝑠 is either a local host (e.g., Alice), or an idealized host standing in

for cryptography, such as MPC(Alice, Bob). Local hosts map onto SUC parties, while

idealized hosts map onto ideal functionalities in SUC.

Protocol execution in SUC happens through a number of activations scheduled

by the adversary, whereby a party runs for a number of steps, delivers messages to a

central router, and cedes execution back to the adversary. Thus, to faithfully capture

the behavior of host ℎ in ⟦𝑠⟧, the party/functionality for ℎ in ⟦𝑠⟧SUC is essentially a

wrapper around the projected host ⟦𝑠⟧ℎ , who steps ⟦𝑠⟧ℎ accordingly and forwards the

correct messages to the router.

Additionally, each wrapper needs to explicitly model corruption. In our framework,

corruption is captured by labels: if host ℎ is semi-honest (L(ℎ) ∈ P ∩ T ), then the
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wrapper for ℎ allows the adversary to query ℎ for its current message transcript so

far. Similarly, if ℎ is malicious (L(ℎ) ∉ T ), then the wrapper for ℎ should enable the

adversary to take complete control over ℎ. By using labels to model corruption, we

model static security in SUC.

Communication Model In SUC, all messages between local hosts are fully public,

while messages between hosts and functionalities contain public headers (e.g., the

source/destination addresses) and private content (the message payload). In our system,

we do not stratify message privacy along the party/functionalities axis, but rather

along the information flow lattice: the adversary can read the messages intended for

semi-honest hosts, and can forge messages from malicious hosts. Indeed, information

flow policies allow more flexible security policies for communication.

However, we can encode our communication model into SUC with the aid of ad-

ditional functionalities. To do so, we make use of a secure channel functionality Rsec,

which guarantees in-order message delivery and enables secret communication between

honest hosts. We can realize Rsec in SUC via a standard subprotocol using a public key

infrastructure.

For ideal functionalities in ⟦𝑠⟧SUC, we need to ensure that they only communicate

with local hosts, and not with other ideal functionalities. This property is preserved by

compilation, so we only need to ensure that host selection produces a choreography

𝑠 that has this property. Indeed, our synchronization judgment Δ ⊩ 𝑠 makes it possi-

ble for choreographies to stay well-synchronized, even when the ideal hosts do not

communicate with each other.
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Adversaries and Environments In our framework, we prove perfect security against

non-probabilistic adversaries. However, allowing the adversary to use probability (as in

SUC) does not weaken our simulation result.
6

Additionally, in UC/SUC, the environment is given by a concurrently running

process that outputs a decision bit, whereas our model uses a trace semantics to model

the environment. Security for the latter easily implies the former, since our simulation

result proves equality of environment views between the two worlds.

3.7.1 Secure Instantiation of Cryptography

To securely instantiate cryptographicmechanisms, we appeal to the composition theorem

in SUC, which states that ideal SUC-functionalities F may be substituted for SUC

protocols that securely realize F . To obtain a concrete cryptographic protocol, we may

iterate the composition theorem to apply it to each ideal host.

Ideal hosts in ourmodel correspond closely to the broad class of reactive, deterministic

straight-line functionalities in SUC, including MPC [18, 51] and Zero-Knowledge Proofs

(ZKP) [54]. The main difference between our model and SUC is that our model allows the

adversary to corrupt ideal functionalities (both semi-honestly and maliciously), while

functionalities in SUC are incorruptible. However, we guarantee that the adversary

does not gain more power in our model by restricting the possible corruption models

via authority labels for ideal hosts.

For example, the label of MPC(Alice, Bob) indicates that MPC(Alice, Bob) is semi-

honest (resp. malicious) only if both Alice and Bob are semi-honest (resp. malicious).

6
The dummy adversary theorem [17] implies that security against non-probabilistic adversaries

guarantees security against probabilistic adversaries.
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Thus, any power the adversary gains in corrupting MPC(Alice, Bob) can be instead

achieved using Alice and Bob alone. Similar security concerns for label-based host

selection have been discussed for Viaduct [2]. We can formalize this intuition via a

simulation of the form ⟨𝑊,−→i⟩ ≤ ⟨𝑊,−→′
i
⟩, where𝑊 uses MPC(Alice, Bob), and −→′

i
is

modified so that corruption of MPC(Alice, Bob) is impossible.

3.8 Related Work

Secure Program Partitioning

Prior work on secure program partitioning [92, 100, 101, 2] focuses largely on the

engineering effort on compiling security-typed source programs to distributed imple-

mentations with the aid of cryptography. Our compilation model and type system

are closest to that of Viaduct [2], because we also approximate security guarantees of

cryptographic mechanism with information-flow labels. The purpose of the present

work is to give formal guarantees to such compilers.

A long line of work [43, 42, 5, 62, 60, 59] focuses on enforcing computational non-

interference for information-flow typed programs by using standard cryptographic

mechanisms, such as encryption. In contrast, our compiler enjoys simulation-based

security, which guarantees preservation of all hyperproperties. Computational noninter-

ference gives limited security guarantees in the presence of downgrading mechanisms.

In contrast, we give novel security guarantees to declassifications and endorsements.

Liu et al. [65] give an informal UC simulation proof of a compiler limited to two

party semi-honest MPC and oblivious RAM. They do not consider integrity.
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Simulation-based Security

Simulation-based cryptographic frameworks, such as Universal Composability [17],

Reactive Simulatability [7], and Constructive Cryptography [70], allow modular proofs

of distributed cryptographic protocols. Additionally, Liao et al. [63] give a core language

for formalizing UC protocols. Since we abstract away cryptographic mechanisms using

ideal hosts, we do not explicitly model many subtleties of these systems, such as

probability, computational complexity, and applications of cryptographic hardness

assumptions. We expect our results to naturally be compatible with these frameworks.

Prior verification efforts [20, 68, 10] show simulation-based security for concrete

cryptographic mechanisms. We develop simulation-based security for compiler correct-

ness, showing the correctness of an entire family of protocols (those generated by the

compiler), rather than an individual protocol. However, we appeal to such existing cor-

rectness proofs for individual mechanisms when instantiating idealized hosts, making

our work orthogonal.

Secure Compilation

The standard notions of compiler correctness in the literature are derived from full ab-

straction and hyperproperty preservation [1]. Patrignani et al. [81, 80] argue that robust

hyperproperty preservation and Universal Composability are directly analogous. We

affirm this hypothesis by proving that our simulation-based security result guarantees

RHP. To our knowledge, we are the first to make this connection formally.
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Choreographies

The use of choreographies is central to our compilation process and to the proof of its

correctness.

There is an extensive literature on choreographies [73, 72, 32, 33, 53], but the

primary concern in this literature is proving deadlock freedom, and very little prior

work considers security [67]. We extend choreographies with an information-flow type

system, and show how to model semi-honest and malicious corruption, which is novel.
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CHAPTER 4

CONCLUSION

This dissertation presents Viaduct, a compiler that translates high-level, security-typed

programs into efficient distributed programs that employ a variety cryptographic mecha-

nisms to ensure security, and a general methodology for proving such compilers correct.

The Viaduct compiler and its correctness proof are both agnostic to the set of avail-

able cryptographic mechanisms, making them easily extensible. Our simulation-based

security result guarantees the compiler preserves arbitrary hyperproperties of source

programs in the compiled protocol, allowing developers to perform all their reasoning

at the source level.

Promising avenues for future work remain. We have focused on confidentiality

and integrity properties, however, the label model could be extended with availability

policies [102], guiding selection of fault-tolerant protocols like quorum replication [103]

and MPC with guaranteed output delivery [50]. The Viaduct compiler can be extended

with support for executing code on trusted execution environments like hardware

enclaves [71, 56, 49], the use of special-purpose protocols like private set intersection [24,

82] and Oblivious RAM [91], and the incorporation of a more detailed and accurate cost

model [55].

Using choreographies to reason about UC protocols can be of independent interest

beyond program partitioning. Current approaches [17, 63] require specifying ideal

functionalities as separate processes, which complicates whole-program reasoning.

Fully integrating our result into the Universal Composability framework and showing

how to instantiate our idealizations with concrete cryptographic protocols could pave

the way for simpler UC proofs.
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Finally, our formal security result holds for a strong attacker model that precludes

secret control flow. To allow it, weaker attacker models should be explored.
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